
1

1

National Aeronautics and Space Administration

core Flight System (cFS)
Background and Overview

cFS Training- Page 2

Agenda

• What is Flight Software

• cFS Overview

• cFS History and Motivation

• cFS Architecture and Design

– Quality Analysis

– Key Trades

– Concepts and Standards

– Layers and Components

• Real Time OS

• OS Abstraction

• Platform Support Package

• Core Services

• Applications

• Tools

• Documentation

• Operational Scenarios

• Deployment

• Run Time

• Mission Examples

• Lessons Learned

cFS Training- Page 3

Audience Background

• Familiarity with the Spacecraft Domain

– LEO, MEO, GEO, Deep Space

– Radiation environment

– Size, Mass, and Power (SWaP)

– Limited memory

– Limited processing power

– Autonomy

– Fault management

• Software

– Languages?

– Tools?

– Operating systems?

4

4

National Aeronautics and Space Administration

What is Flight Software (FSW)?

cFS Training- Page 5

Definitions

• A few terms:

– Spacecraft Bus – usually refers to the fundamental systems of a

spacecraft, i.e.

• Mechanical Structure

• Electrical System

• Power System

• Command and Data Handling System (C&DH)

• Attitude Control System/ Propulsion System

• RF System

• Thermal System

– Payloads – refers to the instruments on board, i.e.

• Cameras, Telescopes, Radars, etc

– Observatory – Usually refers to the entire system, i.e. the

combination of the Spacecraft Bus and the Payloads

cFS Training- Page 6

What is Flight Software?

• First, What’s Software?

– A general term primarily used for digitally stored data such as computer

programs and other kinds of information read and written by computers

(Wikipedia)

– You really know what it is when it doesn’t work!!

• Flight Software is

– Software that flies (for us at NASA, that typically means on a spacecraft)

– Could be part of the Spacecraft Bus, or an Instrument

– Hosted within flight electronics CPU; e.g., embedded in the C&DH

– Starts when Spacecraft Power is applied to the CPU

– The “Brains” of the on-orbit mission

– Major enabler to support technology capabilities of future missions

cFS Training- Page 7

Flight Software is Unique

• FSW is embedded” software

– “computer software, written to control machines or devices that are not
typically thought of as computers. It is typically specialized for the
particular hardware that it runs on and has time and memory
constraints.” - (Wikipedia)

• FSW must handle things in “real time”

– Guarantee a response within required time constraint or deadline

– Deterministic

– Reliable

• FSW is Mission Critical

– Must keep the spacecraft safe through an anomaly (i.e. solar arrays pointed to
sun, antenna pointed to ground)

– Spacecraft is not always in contact with the control center(s) and therefore must
be able to act “autonomously”

– Must be maintainable

cFS Training- Page 8

Typical Block Diagram

Simplified Avionics Systems/ The “Observatory”

LVPC

S-Xpndr

Ka-Xmtr
HGA

Hi-Rate

Tlm

Low-Rate

Cmds & Tlm

Battery

MIL-STD-1553 Network

SBC

MAC

HK / IO

DSB

C&DH

Comm

P
o

w
e

r B
u

s

ST(2)

IMU

CSS (s)

Inst.

B

Inst.

A

Inst.

C

Sci. & HK

HGA

Gimbals

PSE

SAM

Sw. and

Unsw.

+28V Pwr

Services

OM-1

PMC

OM-2

OM-3

Prop/Dep-A

Prop/Dep-B

Prop/Dep-C

Prop/Dep-D

GIMBAL

CONTROL

PDE

SA & HG

Deploy

Actuation

Omnis

IRW(4)

Thermistors

Closed Loop Htrs

SpaceWire

Network

Inst.

D

Inst.

E

Inst.

F

H/W Decoded

Command

Discretes

Unsw. + 28V

SA

Gimbals

Mini-RF

GIMBAL

CONTROL

OM-4

SolarArray

Vehicle

Separation

Break Wires

Inhibit Unit

USO 9600

Backup

20MHz

Clock

USO 9500

20MHz

Clock

+ 28V

P
ro

p
u

ls
io

n

P

P

P

R
R

c
P

C
I

cFS Training- Page 9

Typical Flight Software Requirements

• C&DH System:

– Establish the startup configuration

– Manage command and telemetry
• Distribute commands/ Format telemetry for downlink

• Store engineering and science data onboard

– Control the flow of on-board operations

– Time Management

• Manage and distribute on-board time

• Time-tag data

– Allow for upload and execution of new software

– Manage Fault Detection and Correction (FDC)*

• Power System:

– Ensure solar arrays point to the Sun

– Ensure batteries are charged

– Control the distribution of power to onboard subsystems

cFS Training- Page 10

Typical Flight Software Requirements

• GN&C System:

– Determine current attitude

– Control momentum build-up

– Determine current orbit position/velocity

– Control Delta-V maneuvers

• RF System:

– Manage the Downlink

– Accept the Uplink

– Manage antennae pointing for ground contacts (GN&C)

• Instruments:

– Configure science instruments

– Capture science data (may process data)

11

11

National Aeronautics and Space Administration

cFS Overview

cFS Training- Page 12

cFS Overview

cFS

App

• core Flight System (cFS)

– A Flight Software Architecture
consisting of an OS
Abstraction Layer (OSAL),
Platform Support Package
(PSP), cFE Core, cFS
Libraries, and cFS
Applications

• core Flight Executive (cFE)

– A framework of mission
independent, re-usable, core
flight software services and
operating environment

• Each element is a
separate loadable file

core Flight System (cFS)

cFS Training- Page 13

cFS Overview

• A set of mission independent, re-usable, core flight software
services, applications, and operating environment
– Layered architecture

• Supports a variety of hardware platforms

– Provides standardized Application Programmer Interfaces (API)

– Supports and hosts flight software applications

• Applications can be added and removed at run-time (eases system integration and FSW
maintenance)

– Supports software development for on-board FSW, desktop FSW development
and simulators

– Contains platform and mission configuration parameters that are used to tailor to
a specific platform and mission.

cFS Training- Page 14

cFS Overview – cFE Services

• cFE services include:

• Support services include:

– File utilities

cFS Training- Page 15

cFS Overview - Applications

Application Function

CFDP Transfers/receives file data to/from the ground

Checksum Performs data integrity checking of memory, tables and files

Command Ingest Lab Accepts CCSDS telecommand packets over a UDP/IP port

Data Storage Records housekeeping, engineering and science data onboard for downlink

File Manager Interfaces to the ground for managing files

Housekeeping Collects and re-packages telemetry from other applications.

Health and Safety
Ensures that critical tasks check-in, services watchdog, detects CPU hogging, and
calculates CPU utilization

Limit Checker Provides the capability to monitor values and take action when exceed threshold

Memory Dwell Allows ground to telemeter the contents of memory locations. Useful for debugging

Memory Manager Provides the ability to load and dump memory

Software Bus Network Passes Software Bus messages over various “plug-in” network protocols

Scheduler Schedules onboard activities via (e.g. HK requests)

Scheduler Lab Simple activity scheduler with a one second resolution

Stored Command Onboard Commands Sequencer (absolute and relative)

Telemetry Output Lab Sends CCSDS telemetry packets over a UDP/IP port

16

16

National Aeronautics and Space Administration

History and Motivation

cFS Training- Page 17

The Aerospace Domain is Unique

• Missions require use of specialized, radiation tolerant hardware
– Complete COTS solutions do not exist

– Fixed and constrained environment
• Speed of processor

o Example: LRO uses 166 MHz processor,

my laptop uses 2.5 GHz processor

• Amount of memory and storage
o Example: LRO has 2MB of code memory,

my laptop has 4GB of RAM

• Complex software system
– High speed science operations

– High reliability, fault tolerant

– Autonomous operations

– On orbit maintenance

$ These challenges increase the cost of satellite software $

cFS Training- Page 18

History - Re-use in the Past

• In the past, little cost saving has been realized via FSW reuse

– No product line. Instead heritage missions were used as starting point
(Clone & Own)

– Changes made to the heritage software for the new mission were not
controlled

• New flight hardware or Operating System required changes throughout FSW

• FSW Requirements were sometimes re-written which affects FSW and tests.

• FSW changes were made at the discretion of developer

• FSW test procedure changes were made at the discretion of the tester

• Extensive documentation changes were made for style

– Not all Products from heritage missions were available

– Reuse was not an formal part of development methods

– Reuse was not enforced

cFS Training- Page 19

History and Motivation

• Several years ago, GSFC was tasked two large in-house

missions with concurrent development schedules (SDO, GPM)

• GSFC Code 582 was to design and build the spacecraft bus,

avionics and flight software and integrate these components

with the spacecraft

• Without the staff for both projects and a reduced budget, we

needed to find a better way

– We had about a year to figure it out before staffing up

cFS Training- Page 20

History and Motivation

582’s Approach

• Formed a team of senior FSW engineers
– Management isolated team engineers from short term mission schedules

– Each had experience on different missions and saw commonality across
the missions

• Team then decided to:
– Determine impediments to good flight software reuse

– Perform heritage analysis

• Utilize best concepts from missions ranging from Small Explorer class to the

Great Observatories

• Utilize commonality across missions

– Design with reusability and flexibility in mind

– Take advantage of software engineering advances

– Establish architecture goals

cFS Training- Page 21

cFS Flight Software Architecture

Heritage

Swift BAT

(12/04)

IceSat GLAS (01/03)

XTE (12/95) TRMM (11/97)

MAP (06/01)

SWAS

(12/98)

WIRE

(2/99)

SMEX-

Lite

Triana/DSCOVRTRACE

(3/98)

SAMPEX

(8/92)

ST-5 (4/06)

JWST ISIM

(2018)

SDO (2/10)

cFS Training- Page 22

Heritage - What Worked Well

• Message bus

– All software applications use message passing (internal and external)

– CCSDS standards for messages (commands and telemetry)

– Applications were processor agnostic (distributed processing)

• Layering

• Packet based stored commanding (AKA Mission Manager)

– Absolute Time Sequence (ATP), Relative Time Sequence (RTP)

• Vehicle Failure Detection Isolation and Recovery (FDIR) based

on commands and telemetry packets

• Table driven applications

• Critical subsystems synchronized to the network schedule

– 1553 bus master Time Division Multiple Access (TDMA)

• Clean application interfaces

– Component based architecture (The Lollipop Diagram)

cFS Training- Page 23

Heritage - What Worked Well

• Lots of innovation

– Constant pipeline of new and varied missions

– Teams worked full life cycle

• Requirements through launch + 60days

• Maintenance teams in-house and in contact with engineers early in

development

– Teams keep trying different approaches

• Rich heritage to draw from

• The little “c” in cFE and cFS

– A little core framework, as in low footprint, optimized for flight systems

• Full cFS suite with FreeRTOS in 800KB flash with 2MB RAM for cubesats

cFS Training- Page 24

Heritage - What Didn’t Work So Well

• Statically configured Message bus

– Scenario: GN&C needs a new diagnostic packet

• Give the C&DH team your new packet definition file

• Wait a week for a new interim build

• Rinse and Repeat

– How do I add a new one on orbit?

• Monolithic load (The “Amorphous Blob”)

– Raw memory loads and byte patching needed to keep bandwidth needs

down

• Reinventing the wheel

– Mission specific “common” services (“Look , I’ve got a new and

improved version!”)

• Application rewrites for different OSes

cFS Training- Page 25

• Statically configured tables

– Scenario: GN&C needs a gyro scale factor table ….

• Tool directory structure coupling

– Some of your application files go here, some there, and some over there

• Modeling tools and the Amorphous Blob

– Tools did not support component loadable objects

• Implementing device drivers in C++ (1553 example)

• Claims of high reuse, but it still took the same effort on each

mission

Heritage - What Didn’t Work So Well

cFS Training- Page 26

Architecture Goals

1. Reduce time to deploy high quality flight software

2. Reduce project schedule and cost uncertainty

3. Directly facilitate formalized software reuse

4. Enable collaboration across organizations

5. Simplify sustaining engineering (AKA. On Orbit FSW

maintenance) Missions last 10 years or more

6. Scale from small instruments to Hubble class missions

7. Build a platform for advanced concepts and prototyping

8. Create common standards and tools across the center

cFS Training- Page 27

Swift BAT

(12/04)

IceSat GLAS (01/03)

XTE (12/95) TRMM (11/97)

MAP (06/01)

SWAS

(12/98)

WIRE

(2/99)

SMEX-

Lite

Triana/DSCOVRTRACE

(3/98)

SAMPEX

(8/92)

ST-5 (4/06)

core FSW ExecutiveJWST ISIM

(2018)

SDO (2/10)

Core FSW System

LRO (2009)

LWS/RBSP

GPM (2014)

MMS (2014) …
LCRD (2016)

LADEE (2014)

SPP

cFS Architecture Heritage

cFS Training- Page 28

cFS Timeline

SAMPEX

(1992 launch)

1990 2005 2007

LRO

(2009 launch)

(Co-develop cFE)

P
ro

d
u

c
t
L

in
e

 M
a

tu
ri
ty

SDO

(2010 launch)

Clone & Own

2012

cFE available

from IPP Office

cFS Apps

available

from IPP Office

2010

GPM

(2014 launch)

(Co-develop cFS)

2011

cFE

Open Source

2000
GSFC

Consolidates

FSW Orgs

2014
Move toward

cFS

Open Source

Multiple NASA

centers using

cFS

cFS Training- Page 29

Paradigm Shift in Development

• Traditional approach

– Each mission had its own
solution typically based on a
previous mission
• Requires extensive, laborious and

error prone requirement, design and
code changes.

• cFS-based approach

– Baseline code infrastructure
and artifacts already
completed, tested, and
qualified

– Standardizes flight software
development

– Applications can be added
and removed at runtime

cFS Training- Page 30

Lollipop/Bubble Diagram - Example

Event
Services

Stored

Command

CFDP File

TransferScheduler

Packet

Manager

Executive
Services

Time
Services

File
Manager

CommandscFS Applications

Real-time Telemetry

Communication

Interfaces

Mission Applications

1553 Bus

Support

File downlink

Software

Bus)

Instrument

Manager

Command

Ingest

Telemetry

Output

1553

Hardware

Memory

Manager

Data
Storage

Mass

Storage

File System

Table
Services

Limit

Checker

Space

Wire

Instruments

Core Services/Applications

The cFS architecture creates a Flight

Software “App Store”.

Inter-task Message Router (Software Bus)

cFS Training- Page 31

A Complete Engineering Solution

Includes reusable:
– Requirements

– Source Code

– Design Documentation

– Development Standards

– Test Artifacts

– Tools

• Unit Test Framework

• Software Timing Analyzer

– User’s Guides

• Application Developers Guide

• API Reference Guides

• Deployment Guides

• Flight Operations Guides

– Simple Ground system

The cFS architecture reduces Non-Recurring Engineering (NRE) up to 90%

cFS Training- Page 32

cFS Use

• In use at seven NASA centers:
– Ames Research Center

– Glenn Research Center

– Goddard Space Flight Center

– Johnson Space Center

– Kennedy Space Center

– Marshall Space Flight Center

– Langley Research Center

• Used/In Development on:
– Landers

– Orbiters

– Unmanned Aerial Vehicles

– Space Suits

– Crew Habitats

– Rovers

– Spacecubes

– SmallSats

– PiSats

33

33

National Aeronautics and Space Administration

Architecture and Design

Quality Analysis

cFS Training- Page 34

Quality Analysis - 1

• Operability

– The architecture must enable the flight system to operate in an efficient and understandable

way

• Reliability

– The architecture implementation must be known to behave correctly in nominal and expected

off-nominal situations

• Robustness

– The architecture implementation must be predictable and safe in the presence of unexpected

conditions

• Performance

– The architecture implementation must be efficient in runtime resources given the targeted

processing environments

• Testability

– The architecture implementation must be easily and comprehensively testable in-situ in flight

like scenarios

• Maintainability

– The architecture implementation must be maintainable in the operational environment

cFS Training- Page 35

Quality Analysis - 2

• Effective Reuse

– The architecture must support an effective reuse approach. This includes the

software and artifacts. Requirements, design, code, review presentations, test,

operations guides, command and telemetry databases. The goal is to achieve

100% reuse of a software component with no code changes

• Composability

– Properties established at the component level, such as interfaces, timeliness or

testability, also hold at the system level. For an application or node to be

composable the architecture and process must support:

• Independent development of nodes

• Integration of the node into a system should not invalidate services in the value and

temporal domains

• Integration of an additional node into a functioning system should not disturb the correct

operation of the existing nodes

• Replica determinism – identical copies of nodes must produce identical results in an

identical order, within a specified time interval

• Predicable Development Schedule

– Development estimates provided by the FSW team should be reliable

cFS Training- Page 36

Quality Analysis - 3

• Scalability

– The FSW must scale with mission requirements. (Example: instruments or

subsystem processor may only need a small amount of message buffer space.

This should be configurable to avoid wasting memory resources)

• Adaptability

– The FSW must be capable of supporting a range of platforms and missions

• Minimized Development Cost

– Costs for mission functions should be as low as possible. The teams must

consider the difference between NRE and costs for a given mission

• Technology infusion

– The FSW should support the infusion of new hardware and software technologies

with minimal side effects

37

37

National Aeronautics and Space Administration

Architecture and Design

Key Trades

cFS Training- Page 38

Architecture Trades - Pub/Sub messaging

• Publish - just send data packets

– Destination agnostic

– Components can be configured to limit command sources

• Subscribe – any component can receive/listen

• Peer to Peer network

– No master, stateless

• Component/node stops and data is un-subscribed automatically

– Robust/Fault tolerant

• Ground systems, models look like any other component/node

– External interfaces can be controlled and firewalled

• CCSDS packet format

– All the pieces (Id, time, seq#, length) and extensible

– Works well with existing GSFC ground systems

• Looked at CCSDS Asynchronous Message Service (AMS)

• Looked at COTS Network Data Distribution Service (NDDS)

cFS Training- Page 39

Architecture Trades - File System

• File systems are a well supported abstraction for data storage

• Standard file transfer mechanisms (TFTP, FTP, CFDP)

• General operating system support

• No GSFC missions had flown a file system

– Triana never launched

• Lots of resistance to added complexity

– VxWorks DOS file system issues on spacecraft

• Result:

– Use file for code, data and recorder

– LRO used VxWorks file system with work-arounds (stat example)

– Looking at JPL file system

• RAMFS – A Volatile Memory Filesystem

o POSIX compliant, SPIN® checked

– Funding RTEMS robust file system work

cFS Training- Page 40

Architecture Trades - “C” language (cFE)

• Small footprint

• Links and binds with other languages C++, ADA, scripts

• Not required for all components, just the cFE

• Component interfaces are standard not the implementation

– Issue becomes the supporting language library

• Most modeling tools can interface to “C”

cFS Training- Page 41

Architecture Trades – Development Tools

• Rational Rose UML (2004) time frame

– Did not support MMU

– Single binary image

– High cost for small projects

• Rational Rose UML (2010) time frame

– Adding support for MMU and VxWorks RTP

– RTPs can be separate loadable object files

• GNU based compilers and linkers

– Supports multiple platforms

– Non proprietary

– Tool chain can be modified

– Long-term tool use without issues of licenses and vendor obsolescence

• Result: GNU tool chain

cFS Training- Page 42

Architecture Trades - Linking

• Dynamic linking

– Requires symbols tables on board

– Executable Linkable Format (ELF) code files about double in size

– More efficient use of memory (No “spacers” required)

– Can map around bad memory blocks (MMU required)

• Static linking

– No on board symbols

– Small code files (stripped ELF)

– Absolute location for each software component

– Need to add margin around component memory space

• Trade result:

– The architecture will support both

– Open source RTEMS now has support for both (GSFC funded)

cFS Training- Page 43

Architecture Trades - UML

• With well defined cFE interfaces and services, it was always

envisioned that cFS components could be created with

modeling tool auto generated code and linked with the GNU tool

chain

• This has been done somewhat with Matlab/Simulink for GN&C

and is the topic for the first cFS workshop

cFS Training- Page 44

Concepts and Standards

• Layered Architecture

• Standard Middleware/Bus

• Standard Application Programmer Interface

for a set of core services

• Plug and Play Reusable Applications

• Command & Telemetry database

• Reuse Requirements Management

• Reuse Standards

• Reuse Repository

• Configuration Tool for Mission Users

• Development Tools

}

}

Core Flight Executive (cFE)

cFS Applications

Library & CM

Integrated Development

Environment

}

}

cFS Training- Page 45

Layered Service Architecture

• Each layer and service has a standard

API

• Each layer “hides” its implementation

and technology details.

• Internals of a layer can be changed --

without affecting other layers’ internals

and components.

• Provides Middleware, OS and HW

platform-independence.

Files, Tables

cFS Training- Page 46

Plug and Play

Plug and Play

• cFE API’s support add and remove

functions

• SW components can be switched in and

out at runtime, without rebooting or

rebuilding the system SW.

• Qualified Hardware and cFS-compatible

software both “plug and play.”

Impact:

• Changes can be made dynamically during

development, test and on-orbit even as

part of contingency management

• Technology evolution/change can be taken

advantage of later in the development

cycle.

• Testing flexibility (GSE, test apps,

simulators)

This powerful paradigm allows SW components to be switched in and out

at runtime, without rebooting or rebuilding the system SW.

cFS Training- Page 47

47

Reusable Components

Reusable Components

• Common FSW functionality has been
abstracted into a library of reusable
components and services.

• Tested, Certified, Documented

• A system is built from:

– Core services

– Reusable components

– Custom mission specific
components

– Adapted legacy components

Impact:

• Reuse of tested, certified
components supplies savings in each
phase of the software development
cycle

• Reduces risk

• Teams focus on the custom aspects
of their project and don’t “reinvent
the wheel.”

Image

Processor

Proximity

Sensor

Science

Process
TLM +

Command

HW

Comp

Orbit

Control

HW

Comp
HW

Comp

cFS Training- Page 48

Component Example

• Interface only through core API’s.

• A component contains all data needed to

define it’s operation.

• Components register for services

• Register exception handlers

• Register Event counters and filter

• Register Tables

• Publish messages

• Subscribe to messages

• Component may be added and removed at

runtime. (Allows rapid prototyping during

development)

• Configuration Parameters

Table API SB APIEvent API Exec & Task

API

Exec Exception

API

Time API

Tables

Files

.

.

.

Exception

Handlers

.

.

.

Messages

.

.

.

Application

code body

.

.

.

Events &

Filters

.

.

.

cFS Training- Page 49

Configuration Parameters

• Mission configuration parameters – used for ALL processors in a
mission (eg. time epoch, maximum message size, etc)

– Default contained in:

• \cfe\fsw\mission_inc\cfe_mission_cfg.h

• \apps\app\fsw\mission_inc\app_mission_cfg.h

• \apps\app\fsw\mission_inc\app_perfids.h

– Mission version maintained in \build\mission_inc

• Platform Configuration parameters – used for the specific processor
(eg. time client/server config, max number of applications, max number
of tables, etc)

– Defaults contained in:

• \cfe\fsw\platform_inc\cpuX\cfe_platform_cfg.h

• \cfe\fsw\platform_inc\cpuX\cfe_msgids_cfg.h

• \apps\app\fsw\platform_inc\app_platform_cfg.h

• \apps\app\fsw\platform_inc\app_msgids.h

• \osal\build\inc\osconfig.h

– Mission versions contained in \build\cpuX\inc

cFS Training- Page 50

Configuration Parameter Types

• Software Bus Message Identifiers

– cfe_msgids.h (message IDs for the cFE should not have to change)

– app_msgids.h (message IDs for the Applications) are platform
configurations

• Executive Service Performance Identifiers

– cFE performance IDs are embedded in the core

– app_perfids.h (performance IDs for the applications) are mission
configuration

• cFE, osal, and application specific configurations

– xxx_mission_cfg.h, xxx_platform_cfg, and osconfig.h

• Makefiles

– Specifies the platforms and their applications and tables to be built for a
mission

cFS Training- Page 51

cFS Application Mission and Platform

Configuration Files

File Purpose
Mission or

Platform
Notes

cfe_mission_cfg.h
cFE core mission wide
configuration

Mission

cfe_platform_cfg.h
cFE core platform
configuration

Platform
Most cFE parameters are
here

cfe_msgids.h
cFE core platform message
IDs

Platform
Defines the message IDs
the cFE core will use on
that Platform(CPU)

osconfig.h OSAL platform configuration Platform

XX_mission_cfg.h
A cFS Application’s mission
wide configuration

Mission

Allows a single cFS
application to be used on
multiple CPUs on one
mission

XX_platform_cfg.h
Application platform wide
configuration

Platform

XX_msgids.h Application message IDs Platform

XX_perfids.h Application performance IDs Platform

52

52

National Aeronautics and Space Administration

Architecture Layers

cFS Training- Page 53

cFS Architecture Layers

Development Tools

and Ground Systems

Core

Layer

Abstraction

Library Layer

Hardware

Layer

Application

Layer

OSAL Open Source ReleasecFE Open Source Release Application Open Source Releases

cFE cFE API

RTEMS

PC-LinuxOS Abstraction

API

Platform Support

Package API

CFDP

Stored Cmd.SB NetworkSchedulerMemory Man.Memory DwellLimit Checker

Health & SafeHousekeepingFile ManagerData StorageCheck Sum

Beagelbone-Linux

Grut699-VxWorks

Mcp750-VxWorks Mcf5235-RTEMSVxWorks

Posix

Application

Generator

Performance

Tools

Lab

Applications

Python

Ground System

Table Tools Unit Test Build System

cFS Training- Page 54

cFE

App

1

cFE

App

1

cFE

App

1

cFE

App

1

cFE

App

1

cFS Software Layers and Components

Real Time OS

OS Abstraction API

cFE API

Mission

Library

cFE

Apps

(x5)

PROM Boot FSW

Mission and cFS

Application Layer

cFE Core

Layer

Abstraction

Library Layer

Mission Developed

3rd Party

RTOS / BOOT

LayerReal Time OS
Board Support

Package

cFE Core

OS Abstraction

Linux

OS Abstraction

RTEMS

OS Abstraction

VxWorks

cFE Platform Support

Packages

cFE PSP API

Open source

Mission

App 2

Mission

App 1
Mission

App N

cFS

Library

OS Abstraction

Free RTOS

cFE

App

1

cFE

App

1

cFE

App

1

cFS

Apps

(x13)

cFS Training- Page 55

RTOS / Boot Layer

• PROM Boot Software

– PROM resident software that does early initialization and bootstraps the Operating System

– Provides ground based EEPROM/Flash loader

– Keep it as simple as possible to minimize PROM changes

– Commonly used Boot Software

• RAD750 – BAE SUROM

• Coldfire – Custom GSFC developed

• LEON3 – uBoot – or Gaisler MKPROM

• Real Time Operating System

• Pre-emptive priority based multi-tasking

• Message Queues, Semaphores

• Interrupt handling, Exception Handling

• File systems, and shell

• Supported Real Time Operating Systems

• VxWorks

• RTEMS

• Linux

• Linux with Xenomai Real-time extensions (In work)

• ARINC 653 (Green Hills, and VxWorks-653)

cFS Training- Page 56

• The Operating System Abstraction layer (OSAL) is a small software
library that isolates our Flight Software from the Real Time Operating
System

• With the OS Abstraction Layer, flight software such as the Core Flight
Executive can run on several operating systems without modification

– Allows execution of FSW on simulators and desktop computers

• Current Implementations of the OSAL include:

– RTEMS - Used on the RHCF 5208 Coldfire CPU

– vxWorks - Used on RAD750

– Linux / x86 - Used to run software on Desktop PC with Linux

Abstraction Library Layer

OSAL - 1

OS_TaskCreate

taskSpawn
rtems_task_create

rtems_task_start
pthread_create

Implementation for

vxWorks

Implementation for

RTEMS

Implementation for

POSIX (linux, mac

os X, etc..)

OS function to create

a new task

cFS Training- Page 57

Abstraction Library Layer

OSAL - 2

• A standalone project, separate from the cFE

– The cFE is built on the OSAL to provide portability

• Available as Open Source on NASA’s Open Source Website

– http://opensource.gsfc.nasa.gov

cFS Training- Page 58

Abstraction Library Layer
Platform Support Package

• Platform Support Package (PSP)

– A Platform Support Package is all of the software that is needed to adapt the

cFE Core to a particular Processor Card.

– A Platform Support Package also includes all of the tool chain specific make

rules and options

– Each mission is expected to customize a Platform Support Package

• Functions include:

– Startup code

– EEPROM and Memory read, write, copy, and protection functions

– Processor card reset functions

– Exception handler functions

– Timer functions

• Current Implementations of the PSPs include:

– Desktop Linux for prototyping and Class “D”

– Power PC MCP750 / RAD750 – vxWorks 6.x

– Coldfire - RTEMS

cFS Training- Page 59

cFE Core Layer

Overview

• A set of mission independent, re-usable, core flight software
services, applications, and operating environment
– Layered architecture

• Supports a variety of hardware platforms

– Provides standardized Application Programmer Interfaces (API)

– Supports and hosts flight software applications

• Applications can be added and removed at run-time (eases system integration and FSW
maintenance)

– Supports software development for on-board FSW, desktop FSW development
and simulators

– Contains platform and mission configuration parameters that are used to tailor to
a specific platform and mission.

Executive

Services

(ES)

Software

Bus

(SB)

Time

Services

(TIME)

Event

Services

(EVS)

Table

Services

(TBL)

Open source release at, http://sourceforge.net/projects/coreflightexec/

cFS Training- Page 60

Context Diagram Legend

Software Bus (SB)

Communications

Non-Software Bus

Information Flow cFS Application

External Hardware Entity

or Data Store (variable/table)

FileInternal Software Module,

Library, or Data Store

cFS Training- Page 61

cFE Core Layer

Executive Services

• Manages the startup of the cFE

– Power-on reset – cFE core, cFS Apps, file system, critical data store and logs are
initialized

• Decompresses cFS Applications

– Processor reset – cFE core and cFE Apps are initialized. The following is
preserved:

• File system

• Critical Data Store (CDS)

• ES System Log

• ES Exception and Reset (ER) log

• Performance Analysis data

• ES Reset info (i.e.reset type, boot source, number of processor resets)

• Time Data (i.e. MET, SCTF, Leap Seconds)

cFS Training- Page 62

cFE Core Layer

Executive Services

• Provides ability to start, restart and delete cFS Applications

– On startup

– During runtime

• Manages a Critical Data Store which can be used to preserve data
(except in the case of a power-on reset)

• Provides ability to load shared libraries

• Provides support for device drivers

• Logs information related to resets and exceptions

• Manages a system log for capturing information and errors

• Provides Performance Analysis support

cFS Training- Page 63

Executive Services

Software Context Diagram

Ground or Stored

Commands

CI, SC

HK, TO,

DS HK Packets

Event Messages

cFE

Executive

Services

HK

Requests

OSAL

Log

File

Software

Scheduler

App Registration

& API Requests

Open/Write

Log Files

Any cFS

Application

Any cFS

Application/

Library

Spawns

Non-Volatile

File System

Startup

Script

PSP

RAM

Critical Data

Store

System Log

Exception and

Reset Log

Performance

Analysis

Startup

Script

Read/Write CDS, Restart Type & Initiate Reset,

Exception Handling

Open/Read Startup Script

Load

Module

cFS Training- Page 64

Executive Services Startup

Initialize OS Data
structures (task table,

queues etc)

Initialize Core
Applications

Initialize
cFE Apps and shared
libraries (as specified
in ES startup script)

Start
Multitasking

From BSP
Startup

Initialize File Systems

The cFE core is started as one unit. The cFE Core is linked with the RTOS and support libraries and loaded into system
EEPROM as a static executable.

Volatile

File System

Non-Volatile

File System
Startup Script

And cFE Apps/Libs

RAM

cFE Core

cFE App 1

cFE App N

Exception and Reset Log
Log entry

cFE Applications

cFS Training- Page 65

Executive Services Restart

• Restart cFE Core (and Applications)

– This is a full restart of the cFE Core

– It is equivalent to the traditional Cold Restart

• Restart Application

– This will effectively delete and start an Application

– It can be used in response to

• Exceptions

• On-board FDC applications

• Ground commands

– Critical data can be stored in a Critical Data Store (CDS)

cFS Training- Page 66

Executive Services APIs

Utility Functions Purpose

CFE_ES_GetBlockInCDS Allocate a block of space in the critical data store

CFE_ES_WriteToSysLog Write to provided string to the System Log

CFE_ES_CalculateCRC Calculate a data integrity value on a block of memory.

Critical Data Store (CDS)

Functions
Purpose

CFE_ES_RegisterCDS
Allocates a block of memory in the Critical Data Store for a cFE
Application

CFE_ES_CopyToCDS Saves a block of data to the CDS

CFE_ES_RestoreFromCDS Recover a block of data from the CDS

Memory Pool Functions Purpose

CFE_ES_PoolCreate Manages a memory pool created by an application

CFE_ES_GetPoolBuf Gets a buffer from the memory pool created by CFE_ES_CreatePool

CFE_ES_PutPoolBuf Releases a buffer from the memory pool

Performance Analysis

Functions
Purpose

CFE_ES_PerfLogEntry Entry marker for the performance analysis tool

CFE_ES_PerfLogExit Exit marker for the performance analysis tool

cFS Training- Page 67

Executive Services APIs

Application and Task Control

Functions
Purpose

CFE_ES_GetResetType Identifies the type of the last reset the processor most recently underwent

CFE_ES_ResetCFE Perform a reset of the cFE Core and all of the cFE Applications

CFE_ES_RestartApp Perform a restart of the specified cFE Application

CFE_ES_ReloadApp Stops and then Starts a cFE Application from the specified file

CFE_ES_DeleteApp Deletes a cFE Application

CFE_ES_ExitApp Provides an exit point for a cFE Application’s run loop

CFE_ES_RegisterApp Register the cFE Application

CFE_ES_GetAppIDByName Returns the cFE Application ID corresponding to the given cFE Application name

CFE_ES_GetAppID Returns the cFE Application ID of the calling cFE Application

CFE_ES_GetAppName Returns the cFE Application Name of the calling cFE Application

CFE_ES_GetTaskInfo Returns info about the specified child task ID including Task name, Parent task etc.

CFE_ES_RegisterChildTask Register a child task (note each cFE Application has a main task)

CFE_ES_CreateChildTask Create a child task

CFE_ES_DeleteChildTask Delete a child task

CFE_ES_ExitChildTask Exits a child task

cFS Training- Page 68

cFE Core Layer

Event Services

• Provides an interface for sending asynchronous debug,
informational, or error message telemetry to ground

– Provide a processor unique software bus event message containing the
processor ID, Application ID, Event ID, timestamp, and the request-
specified event data (text string including parameters)

– Provide ability to send messages via hardware message ports

– Provide ability to send long or short message format

• Provide an interface for filtering event messages

– Provide event filtering via:
• Event Filtering algorithm

• Event Type (Debug, Information, Error, Critical)

• Application

• Application Event Type

Event

Services

(EVS)

cFS Training- Page 69

cFE Core Layer

Event Services

• Provide an interface for registering an application’s event filter
masks, types, and type enable status

• Provide an interface for un-registering an application from using
event services

• Provide an interface for enabling/disabling an application’s event
filtering

• <optional> Provide an interface for logging event into a local
event log

Example of an Event message:

cFS Training- Page 70

Event Services

Software Context Diagram

Ground or Stored

Commands

CI, SC

HK, TO,

DS

HK Packets

cFE

Event Services

Any cFS

Application

Read/Write

Registry and

Log

HK

Requests

OSAL

File

Software

Scheduler

App Registration

Send Event Requests

Event Messages

RAM

EVS Registry

Local Event

Log

Output

Port

Event Messages

cFS Training- Page 71

Event Services APIs

Application Functions Purpose

CFE_EVS_Register
Register the application with event services. All Applications must
register with EVS

CFE_EVS_Unregister Cleanup internal structures used by the event manager

CFE_EVS_SendEvent
Request to generate a software event. Event message will be generated
based on filter settings

CFE_EVS_SendEventWithAppID
Generate a software event as though it came from the specified cFE
Application

CFE_EVS_SendTimedEvent Generate a software event with a specific time tag

CFE_EVS_ResetFilter Resets the calling application’s event filter for a single event ID

CFE_EVS_ResetAllFilters Resets all of the calling application’s event filters

cFS Training- Page 72

• Provides a portable inter-application message service

• Routes messages to all applications that have subscribed to the

message

– Subscriptions are done at application startup

– Message routing can be added/removed at runtime

• Reports errors detected during the transferring of messages

• Outputs Statistics Packet and the Routing Information when

commanded

cFE Core Layer

Software Bus (SB)

Software

Bus

(SB)

cFS Training- Page 73

Software Bus Messages

• cFE abstracts the message format

• Implementation currently includes CCSDS format

• Software Bus provides functions to access message header (eg.
CFE_SB_SetCmdCode, CFE_SB_SetMsgTime etc)

typedef struct{

CCSDS_PriHdr_t Pri;

CCSDS_CmdSecHdr_t Sec;

}CFE_SB_CmdHdr_t;

typedef struct{

CCSDS_PriHdr_t Pri;

CCSDS_TlmSecHdr_t Sec;

}CFE_SB_TlmHdr_t;

cFS Training- Page 74

cFE Software Bus Services

Software Context Diagram

Ground or Stored

Commands

CI, SC

HK, TO,

DS

HK Packets

Event Messages

cFE

Software Bus

Services

HK

Requests

Software

Scheduler

Send

Messages

Receive

Messages

Any cFS

Application

RAM

SB Routing

Information

Message Pipe

Pipe

Information

API Requests

Read/Write

OSAL

File

Open/Close/Write

File

cFS Training- Page 75

cFE Software Bus APIs

Application Functions Purpose

CFE_SB_CreatePipe
Creates and initializes an input pipe that the calling application can use to receive
software bus messages

CFE_SB_DeletePipe Deletes specified input pipe

CFE_SB_InitMsg Initialize a buffer for a software bus message

CFE_SB_SubscribeEx Adds the specified pipe to the destination list for the specified Message ID

CFE_SB_Subscribe
Same as CFE_SB_SubscribeEx except uses default Quality and Message Limit
parameters

CFE_SB_SubscribeLocal Same as CFE_SB_Subscribe except the subscription is local to the processor

CFE_SB_Unsubscribe Removes specified pipe from destination list for the specified Message ID

CFE_SB_UnsubscribeLocal
Removes specified pipe from destination list for the specified Message ID (local
subscription)

CFE_SB_SendMsg Sends the specified Message to all subscribers

CFE_SB_RcvMsg

Retrieves the next message from the specified pipe
‐ Can poll, pend with a timeout or pend forever
‐ Data not copied. Function sets the Receiver’s pointer to the address of

the actual message

CFE_SB_GetLastSenderId Retrieve the application ID of the sender of the last message

CFE_SB_ZeroCopyGetPtr Get a SB buffer for sending a Message via CFE_SB_ZeroCopySend

CFE_SB_ZeroCopySend Send a Message that has been created via cFE_SB_ZeroCopyGetPtrbuffer

CFE_SB_ZeroCopyReleasePtr
Releases the Software Bus buffer created by cFE_SB_ZeroCopyGetPtrbuffer (On
error condition)

cFS Training- Page 76

cFE Software Bus APIs

Application Functions Purpose

CFE_SB_MsgHdrSize

Provide access to construct and
interpret software bus message
fields (instead of accessing
elements of the structure directly -
portability)

CFE_SB_GetUserData

CFE_SB_GetMsgId

CFE_SB_SetMsgId

CFE_SB_GetUserDataLength

CFE_SB_SetUserDataLength

CFE_SB_GetTotalMsgLength

CFE_SB_SetTotalMsgLength

CFE_SB_GetMsgTime

CFE_SB_SetMsgTime

CFE_SB_TimeStampMsg

CFE_SB_GetCmdCode

CFE_SB_SetCmdCode

CFE_SB_GetChecksum

CFE_SB_GenerateChecksum

CFE_SB_ValidateChecksum

cFS Training- Page 77

cFE Core Layer

Table Services

• Manages all cFS table images

• API provided for Applications to simplify Table Management

– Applications do not need to contain code for managing their own tables

– Registering of Tables at run time allows for scalable system integration

• Table of Tables (a.k.a - Table Registry) is populated at run-time
eliminating cross coupling of Applications with flight executive
at compile time

Table

Services

(TBL)

cFS Training- Page 78

cFE Core Layer

Table Services

• All table updates are performed synchronously with the

Application that owns the table to ensure table data integrity

• Tables can be shared between Applications

• Non-Blocking table updates allow tables to be used in Interrupt
Service Routines

– Single buffer tables – uses shared inactive buffer for table updates (4)

– Double buffer tables – uses dedicated inactive buffer for table updates

• Common ground/user interface to all tables via Table Services

– Load/Dump/Validate and Activate tables

– Table Registry Dump

– Files are used to load and dump tables

cFS Training- Page 79

Table Services

Software Context Diagram

Ground or Stored

Commands

CI, SC

HK, TO,

DS

HK Packets

Event Messages

cFE

Table Services

Any cFS

Application
HK

Requests

Software

Scheduler

Filenames

Table Handles,

Data Pointers

RAM

Table Registry

Active and

Inactive Table

Memory

Table Registry

Table Image

OSAL

File

Open/Read

File

cFS Training- Page 80

Table Services APIs

Application Functions Purpose

CFE_TBL_Register Registers a new table

CFE_TBL_Unregister Unregister a table and release its resources

CFE_TBL_Load Initialize or update the contents of a table from memory or a file

CFE_TBL_Share Get a handle to a table that was created by another application

CFE_TBL_GetAddress Get the address of a table (locks the table)

CFE_TBL_GetAddresses Get the address of a collection of tables (locks the tables)

CFE_TBL_ReleaseAddress
Release a table address (unlocks the table). Must be done periodically by the cFE
Application that owns the table in order to allow updates to the tables

CFE_TBL_ReleaseAddresses Release an array of table address (unlocks the tables)

CFE_TBL_GetStatus Returns the status on the specified table regarding validation or update requests

CFE_TBL_Validate
Performs the registered validation function for the specified table and reports the
success/failure to the operator via Table Services Housekeeping Telemetry and Event
Messages.

CFE_TBL_Update Update table contents with new data if an update is pending

CFE_TBL_Manage
Performs routine actions to manage the specified table. This includes performing
any necessary table updates or table validations

CFE_TBL_GetInfo Provides information about the specified table including size, last time updated etc.

cFS Training- Page 81

cFE Core Layer

TIME Services

• Provides a user interface for correlation of spacecraft time to

the ground reference time (epoch)

• Provides calculation of spacecraft time, derived from mission

elapsed time (MET), a spacecraft time correlation factor (STCF),

and optionally, leap seconds

• Provides a functional API for cFE applications to query the time

• Distributes a “time at the tone” command packet, containing the

correct time at the moment of the 1Hz tone signal

• Distributes a “1Hz wakeup” command packet

• Forwards tone and time-at-the-tone packets

Time

Services

(TIME)

cFS Training- Page 82

Time Services

Software Context Diagram

Ground or Stored

Commands

CI, SC

HK, TO,

DS HK Packets

Event Messages

Any cFS

ApplicationHK

Requests

Software

Scheduler

Time Requests

Time Data

Local Timing

Hardware

Local/External

Tone Source

Tone interrupt

Local Clock,

1Hz interrupt

Time

1Hz

Child Task

PSP

Time

1Hz Tone

Child Task

cFE

Time Services

Tone Message

1Hz Wakeup

Message

cFS Training- Page 83

Time Services APIs

Basic Clock Functions Purpose

CFE_TIME_GetTime Get the current spacecraft time

CFE_TIME_GetUTC Get the current UTC time

CFE_TIME_GetTAI Get the current TAI time

CFE_TIME_MET2SCTIME Converts MET to Spacecraft time

CFE_TIME_GetMET Get the current value of the mission-elapsed time

CFE_TIME_GetMETseconds Get the current seconds count of the mission-elapsed time

CFE_TIME_GetMETsubsecs Get the current sub-seconds count of the mission-elapsed time

CFE_TIME_GetSTCF Get the current value of the spacecraft time correction factor (STCF)

CFE_TIME_GetLeapSeconds Get the current value of the leap seconds counter

CFE_TIME_GetClockState Get the current state of the spacecraft clock

CFE_TIME_GetClockInfo Get clock information

Time Conversion Functions Purpose

CFE_TIME_Sub2MicroSecs Convert a sub-seconds count to an equivalent number of microseconds

CFE_TIME_Micro2SubSecs Convert a number of microseconds to an equivalent sub-seconds count

CFE_TIME_CFE2FSSeconds Convert cFE seconds to File System Seconds

CFE_TIME_FS2CFESeconds Convert File System seconds to cFE seconds

cFS Training- Page 84

Time Services APIs

External Time Sources Purpose

CFE_TIME_ExternalTone Latch the local time at the 1Hz tone signal

CFE_TIME_ExternalMET Provide the MET from an external source

CFE_TIME_ExternalGPS Provide the time from an external source that has data common to GPS receiver

CFE_TIME_ExternalTime
Provide the time from an external source that measures time relative to a known
epoch

Time Manipulation Functions Purpose

CFE_TIME_Add Add two time values

CFE_TIME_Subtract Subtract one time value from another

CFE_TIME_Compare Compare two time values

CFE_TIME_Print Print a time value as a string

cFS Training- Page 85

cFS Applications

Application Function

CFDP Transfers/receives file data to/from the ground

Checksum Performs data integrity checking of memory, tables and files

Command Ingest Lab Accepts CCSDS telecommand packets over a UDP/IP port

Data Storage Records housekeeping, engineering and science data onboard for downlink

File Manager Interfaces to the ground for managing files

Housekeeping Collects and re-packages telemetry from other applications.

Health and Safety
Ensures that critical tasks check-in, services watchdog, detects CPU hogging, and calculates
CPU utilization

Limit Checker Provides the capability to monitor values and take action when exceed threshold

Memory Dwell Allows ground to telemeter the contents of memory locations. Useful for debugging

Memory Manager Provides the ability to load and dump memory.

Software Bus Network Passes Software Bus messages over various “plug-in” network protocols

Scheduler Schedules onboard activities via (e.g. HK requests)

Scheduler Lab Simple activity scheduler with a one second resolution

Stored Command Onboard Commands Sequencer (absolute and relative).

Telemetry Output Lab Sends CCSDS telemetry packets over a UDP/IP port

cFS Training- Page 86

Example cFS Application Template

Restart

Type

Processor Reset

Retrieve

Preserved data

Restart

Power-on Reset

Initialize data

CFE_ES_RegisterApp

CFE_EVS_Register

CFE_SB_InitMsg (all msgs)

CFE_SB_CreatePipe (all pipes)

 CFE_SB_Subscribe (all msgs)

CFE_TBL_Register (all tables)

CFE_TBL_Load (all tables)

Send Event

Message (Error)

Exit

CFE_TBL_Manage

cFE_TBL_GetAddress

.

.

Task processing

.

CFE_TBL_ReleaseAddress

Error CFE_SB_RcvMsg

pend on data

 (w/wo timeout)

CFE_SB_TimeStampMsg

CFE_SB_SendMsg (hk msg)

No Data

cFS Training- Page 87

Context Diagram Legend

Software Bus (SB)

Communications

Non-Software Bus

Information Flow cFS Application

External Hardware Entity

or Data Store (variable/table)

FileInternal Software Module,

Library, or Data Store

88

88

National Aeronautics and Space Administration

CFDP (CF)

cFS Training- Page 89

CF Overview

• Transmits and receives files to and from the ground

– Typically interfaces to ground through CI and TO applications

• Utilizes CCSDS File Delivery Protocol (CFDP)

cFS Training- Page 90

CF Context Diagram

cFS Training- Page 91

CF CFDP Engine

• Provides compile-time and run-time configuration parameters

• Packages file data and protocol messages in PDUs as defined in
CCSDS Blue Book CCSDS 727.0-B-4

• Capable of transmitting and receiving class 1(Unreliable) or
class 2(Reliable) transfers

• Handles simultaneous transactions

• Provides “Indications” to inform the CF application of
significant occurrences

• Receives “Put Requests” to start file transfer

• Verifies file checksum for class 1 and 2

cFS Training- Page 92

CF CFDP Class 1 Uplink Example

cFS Training- Page 93

CF Class 2 Playback Example

cFS Training- Page 94

CF File Uplink

• Subscribes to Uplink PDUs. MsgId is specified in the
configuration table

– CF application does not do much processing in the uplink direction. The
engine does most of the work.

• Receives PDUs wrapped in CCSDS packet from Command
Ingest application (CI).

• Strips away the CCSDS header and passes the raw PDU to the
engine.

• Keeps track of uplinked files through the use of an active queue
and a history queue

cFS Training- Page 95

CF – File Playback

cFS Training- Page 96

CF Flow Control

cFS Training- Page 97

CF Compile Time Configuration

• Max Simultaneous Transactions

• Pipe Name and Depth

• Max File Data in Playback PDU

• Max File Data in Uplink PDU

• Engine Temp File Prefix

• Configuration Table

• Configuration Table Filename

• Max Restricted Directories

• Max Playback Channels

• Max Polling Directories Per Channel

• Memory Pool Bytes

• Default Queue Info Filename

cFS Training- Page 98

CF Commands - 1

Command Description Parameters

Noop Increment command counter, display CF version number None

Reset Counters Reset one or all – command, fault, uplink, downlink counters None

Playback File Adds file to playback pending queue.
class, channel preserve, priority,
SrcFilename, DstFilename

Playback Directory Adds files in a given directory to playback pending queue.
class, channel preserve, priority,
SrcDir, DstDir

Purge Queue Purges the playback pending queue channel

Write Queue Writes the queue contents to a file.
type (uplink, playback), channel,
queue, path/filename

Write Active Trans
Writes the transaction information (for all active transactions)
to a file.

path/filename

Enable/Disable
Dequeue

Enable/Disable Dequeue of playback pending queue. channel

Dequeue Node Dequeue a file on the pending or history queue.
type (uplink, playback), channel,
queue, path/filename

Set Engine MIB Param
Set the engine configuration parameter specified in the
command.

The configuration parameter to be
set, value

Get Engine MIB
Param

Display the given engine parameter in an event.
The configuration parameter to be
displayed

Dump Config Params
Displays entire configuration contents via tlm packet. Includes
run-time and compile-time.

None

cFS Training- Page 99

CF Commands - 2

Command Description Parameters

Suspend Transaction
Pauses timers and counters for a single
(or all) transaction(s)

String formatted as SrcEntityId_TransSeqNum
(ex.0.24_3) or filename or “all”

Resume Transaction
Resume timers and counters for a single
(or all) transaction(s)

String formatted as SrcEntityId_TransSeqNum
(ex.0.24_3) or filename or “all”

Cancel Transaction Cancels a single (or all) transaction(s)
String formatted as SrcEntityId_TransSeqNum
(ex.0.24_3) or filename or “all”

Abandon Transaction Abandons a single (or all) transactions(s)
String formatted as SrcEntityId_TransSeqNum
(ex.0.24_3) or filename or “all”

Freeze
Pauses timers and counters for all
transactions

None

Thaw
Resumes timers and counters for all
transactions

None

Enable/Disable Polling
Directory

Enable or disable polling directory
Channel, poll, directory number (get number from
config table)

Set Poll Directory Param
Change class, priority, preserve, SrcPath,
or DstPath of given polling directory

Channel, poll directory number, class, priority,
preserve, source pathname, destination pathname

Send Transaction Diag
Send diagnostic packet for a single
transaction

String formatted as SrcEntityId_TransSeqNum
(ex.0.24_3) or filename

cFS Training- Page 100

CF Commands – 3

Command Description Parameters

Kickstart
Start the transmission of the next file on
the pending queue

Channel

Quick Status
Display high level status of the specified
transaction

String formatted as SrcEntityId_TransSeqNum
(ex.0.24_3) or filename

GiveTake

Adjust the handshake semaphore in the
unexpected case that the semaphore
value lost or gained a count when viewed
during idle time

Channel

Auto Suspend Enable enable or disable auto suspend mode 0 to disable and 1 to enable

cFS Training- Page 101

CF Housekeeping Telemetry Message - 1

Telemetry Point Description

Command Counter Commands executed successfully

Command Error Counter Commands that failed to execute

Memory In Use Number of queue node bytes in use

Peak Memory In Use Peak queue node bytes in use

Max Memory Needed Memory needed if all queues were full

Memory Allocated Memory allocated for queue nodes

Queue Nodes Allocated Number of queue nodes currently allocated

Queue Nodes Released Number of queue nodes returned to heap

Num Uplink PDUs Received Number of uplink PDUs received

Num Files Uplinked Successfully Number of uplink transactions succeeded

Num files failed uplink Number of uplink transactions failed

Num uplink files in progress Number of uplink transactions in progress

Last file uplinked Filename of last file uplinked

Positive ACK Limit Counter Number of ack timeout faults

Keep Alive Limit Counter Number of keep alive faults

Invalid Transmission Mode Counter Number of Inval transmission mode faults

FileStore Rejection Counter Number of filestore rejection faults

File Checksum Failure Counter Number of checksum failure faults

Filesize Error Counter Number of filesize error faults

cFS Training- Page 102

CF Housekeeping Telemetry Message - 2

Telemetry Point Description

NAK Limit Counter Number of NAK limit faults

Inactivity Counter Number of inactivity faults

Invalid File Structure Counter Number of invalid file structure faults

Suspend Request Counter Number of suspend requests

Cancel Request Counter Memory cancel requests

Flight Entity ID Flight Entity ID

Frozen/Thawed Status Transactions frozen or thawed

Machines Allocated by Engine Number of machines allocated

Machines Deallocated Number of machines deallocated

Frozen Partners Any partners frozen — yes/no

Active Playback Files Number of active playback files

Active Uplink Files Number of active uplink files

Total Files Sent Number of playback files sent

Total Files Received Number of uplink files received

Total Transactions Frozen Number of transactions frozen

Total Transactions Suspended Number of transactions suspended

Total unsuccessful files sent Number of unsuccessful playback files

Total unsuccessful files received Number of unsuccessful uplink files

cFS Training- Page 103

CF Housekeeping Telemetry Message - 3

Telemetry Point Description

PDUs Sent Number of PDUs sent

Files Sent Number of files sent

Files Sent successfully Number of files sent successfully

Files Sent unsuccessfully Number of files sent unsuccessfully

Files on Pending Queue Number of files on pending queue

Files on Active queue Number of files on active queue

Files on History queue Number of files on history queue

Naks Received Number of NAKs received

Dequeue Enable State Pending queue, dequeue state

Poll Directory Enable State One flag for each polling directory

Red Light Counter Number of times TO has denied the request to send a pdu

Green Light Counter Number of times TO has accepted the request to send a pdu

Poll Directory Check Counter Number of times poll directories checked

Pending Queue Checked Counter Number of times pending queue checked

Channel Telemetry (repeated for each channel)

104

104

National Aeronautics and Space Administration

Checksum (CS)

cFS Training- Page 105

CS Overview

• Monitors the static code/data specified by the users and the OS

and cFE code segments.

• Uses four different user defined tables

– Table of Apps to be checkummed

– Table of Tables to be checksummed

– Table of EEPROM to be checksummed

– Table of other memory areas (“Memory”) to be checksummed

• Reports all checksum miscompares as errors.

• Scheduled to wakeup on a 1Hz schedule

• Byte-limited per cycle to prevent CPU hogging

cFS Training- Page 106

CS Context Diagram

Ground or Stored

Commands

HK, TO,

DS

HK Packets

Event Messages

Checksum

cFE ES

OSAL

Addresses of

EEPROM

and OS code

HK

Requests

File

Software

Scheduler

Addresses and sizes of

Application code and

cFE core code

EEPROM

Checksum Table

App Checksum

Table

cFE TBL

Addresses and

sizes of RAM

tables

Table Checksum

Table

Memory

Checksum Table

CI, SC

cFS Training- Page 107

CS Checksum Activities

• Background Cycle

– On wake-up from a “background cycle” command, CS continues

checksum calculations through the four definitions tables, OS code

segment, and cFE core.

• Recompute

– On receipt of a “recompute” command, CS spawns a child task to

compute a new baseline checksum for the selected area

– Only one child task may be active at a time

• Includes One-Shot

• One Shot

– On receipt of a “one-shot” command, CS spawns a child task to compute

a checksum on the specified memory area.

– Only one child task may be active at a time

• Includes Recomputes

cFS Training- Page 108

CS Checksum Algorithm

• The term ‘checksum’ is historical and does not actually mean

we are using a checksumming algorithm, as it has been proven

they are not safe enough.

• The algorithm that CS will use will be a Cyclical Redundancy

Check (CRC) algorithm. It will be handled by a cFE ES function

which specifies 8, 16, or 32 bit polynomial.

• By default, CS will use the cFE default CRC algorithm, but can

be changed via a configuration parameter

cFS Training- Page 109

CS Checksum Regions

• EEPROM

– Everything in EEPROM (file system, OS, bootstrap, etc)

• Split up by user-defined regions

• RAM

– OS code segment

– cFE core code segment

– Application code segments

– Tables

– User defined memory segments

cFS Training- Page 110

CS Flow Control

cFS Training- Page 111

CS Telemetering Checksums

• CS maintains a dump-only checksum working table for each

checksum region defined by table in CS

– Updates checksum results for each checksum region on each checksum

cycle

– Users can obtain current checksum results by performing a table dump

via a Table Services command

cFS Training- Page 112

CS Configuration Parameters

Parameter Description Default Value

Default EEPROM Table Name -- /cf/apps/cs_eepromtbl.tbl

Default Memory Table Name -- /cf/apps/cs_memorytbl.tbl

Default Tables Table Name -- /cf/apps/cs_tablestbl.tbl

Default Apps Table Name -- /cf/apps/cs_apptbl.tbl

Pipe Depth Command pipe depth 12

Max # of EEPROM Entries Maximum number of entries in the table to checksum 16

Max # of Memory Entries Maximum number of entries in the table to checksum 16

Max # of Tables Entries Maximum number of entries in the table to checksum 24

Max # of Apps Entries Maximum number of entries in the table to checksum 24

Default Bytes per Cycle # of bytes checksummed in a single cycle 16384 (16KB)

Child Task Priority 1 is highest priority. Child cannot be higher than CS. 200

Child Task Delay Delay to prevent CPU hogging. 1000 ms

Startup Timeout Time for CS to wait for other apps to start 60000 ms

Mission Revision Mission-level revision number 0

cFS Training- Page 113

CS Commands

Command Description

No-op
Increments the Command Accepted Counter and sends an info event
message

Reset Counters Initializes housekeeping counters to zero

Disable Checksumming Stop CS background checking

Enable Checksumming Restart background checking

OneShot Checksum Start at given address, compute checksum over size

Cancel Oneshot checksum If a one shot CS is in progress, stop it

Report Baseline of cFE Core Reports the baseline of the cFE Core code segment

Recompute Baseline of cFE Core Recomputes the baseline of the cFE Core code segment

Report Baseline of OS Reports the baseline of the OS code segment

Recompute Baseline of OS Recomputes the baseline of the OS code segment

Disable Checksumming for cFE Core Stop background checking cFE Core code segment

Enable Checksumming for cFE Core Restart background checking cFE Core code segment

Disable Checksumming for OS Stop background checking OS code segment

Enable Checksumming for OS Restart background checking OS code segment

cFS Training- Page 114

CS EEPROM Commands

Command Description

Get Region ID for EEPROM Address
Retrieves EEPROM table entry ID for region that covers given
address

Recompute baseline for EEPROM Region
Recompute the baseline checksum for the given EEPROM
region ID

Report Baseline for EEPROM Region
Sends event message with baseline checksum for given
EEPROM region ID

Disable Checksumming for EEPROM Region Stop background checking for the given EEPROM region ID

Enable Checksumming for EEPROM Region Restart background checking for the given EEPROM region ID

Disable Checksumming for EEPROM Stop background checking entire EEPROM table

Enable Checksumming for EEPROM Restart background checking entire EEPROM table

cFS Training- Page 115

CS User Defined Memory Commands

Command Description

Get Region ID for Memory Address
Retrieves Memory table entry ID for region that covers given
address

Recompute baseline for Memory Region
Recompute the baseline checksum for the given Memory
region ID

Report Baseline for Memory Region
Sends event message with baseline checksum for given
Memory region ID

Disable Checksumming for Memory Region Stop background checking for the given Memory region ID

Enable Checksumming for Memory Region Restart background checking for the given Memory region ID

Disable Checksumming for Memory Stop background checking entire Memory table

Enable Checksumming for Memory Restart background checking entire Memory table

cFS Training- Page 116

CS Application Commands

Command Description

Recompute baseline for Application
Recompute the baseline checksum for the given App
name

Report Baseline for Application
Sends event message with baseline checksum for given
App name

Disable Checksumming for Application Stop background checking for the given App name

Enable Checksumming for Application Restart background checking for the given App name

Disable Checksumming for Apps Stop background checking entire App table

Enable Checksumming for Apps Restart background checking entire App table

cFS Training- Page 117

CS Table Commands

Command Description

Recompute baseline for Table
Recompute the baseline checksum for the given Table
name

Report Baseline for Table
Sends event message with baseline checksum for given
Table name

Disable Checksumming for Table Stop background checking for the given Table name

Enable Checksumming for Table Restart background checking for the given Table name

Disable Checksumming for Tables Stop background checking entire Table table

Enable Checksumming for Tables Restart background checking entire Table table

cFS Training- Page 118

CS Housekeeping Telemetry Message - 1

Telemetry Description

CmdCounter Number of accepted commands

CmErrCounter Number of rejected commands

ChecksumState Enable/Disable status of background checksumming

EepromCSState Enable/Disable status of EEPROM checksumming

MemoryCSState Enable/Disable status of user-defined Memory checksumming

AppCSState Enable/Disable status of Apps checksumming

TablesCSState Enable/Disable status of Tables checksumming

OSCSState Enable/Disable status of OS code segment checksumming

CfeCoreCSState Enable/Disable status of cFE core checksumming

EepromCSErrCounter Number of checksum errors reported in EEPROM

MemoryCSErrCounter
Number of checksum errors reported in checksummed area of
memory

AppsCSErrCounter Number of checksum errors reported in checksummed apps

TablesCSErrCounter Number of checksum errors reported in checksummed tables

CfeCoreCSErrCounter Number of checksum errors reported in cFE core code

OSCSErrCounter Number of checksum errors reported in OS code

cFS Training- Page 119

CS Housekeeping Telemetry Message - 2

Telemetry Description

CurrentCSTable
Current table being checksummed (cFE Core, OS, EEPROM, Memory,
Apps, Tables)

CurrentEntryInTable Current entry ID in the table currently being checksummed

EepromBaseline Current baseline checksum of entire EEPROM

OSBaseline Current baseline checksum of OS code segment

CfeCoreBaseline Current baseline checksum of cFE Core code segment

LastOneShotAddress Start address used in the last One Shot checksum command

LastOneShotSize Number of bytes used in the last One Shot checksum command

LastOneShotChecksum Calculated checksum by the last One Shot checksum command

PassCounter Number of times CS has passed through all of its tables

120

120

National Aeronautics and Space Administration

Data Storage (DS)

cFS Training- Page 121

DS Overview

• DS receives messages from the software bus and writes them to

files

– Messages to be stored in each file are specified in tables

• provides time and sequence based filtering of message packet

– Files may be size-based or time-based (table defined)

• DS cycle through the following actions:

– create a file, write data pkts to the file, then close file based on file size or time

• DS uses two tables

– Filter Table - one entry per input message id

– File Table - one entry per file basename

• DS has no download or playback capabilities

cFS Training- Page 122

DS Context Diagram

HK

Requests

Updates

API

Requests

Ground or Stored

Commands

HK, TO,

DS

HK Packets

Event Messages

DS

OSAL

Open/Close/

Write File

Software

Scheduler

TBL

File Table

Filter Table

Partition Table

CI, SC

Get Free

Space

File File

SB

Any cFS

Application

Subscribe to Pkts

In Filter Table

Input Packets

cFS Training- Page 123

DS Flow Control

cFS Training- Page 124

DS Timed Based Files

• Time-Based Files:

– Filename = Basename + YYYYDDDHHMMSS + extension

– Time in filename is the time the file was created.

– Files are created when the first input pkt is received

– File Table tells DS how long (in seconds) the file should be open

• File closed when time reached or reset occurs

– Next file created when next input pkt received

cFS Training- Page 125

DS Size Based Files

• Size-Based Files:

– Filename = Basename + 8 Digit Sequence + extension

– Sequence count in filename starts at zero after a power-on reset.

– If input packet would cause file size to be > table defined “max file size”,

then

• Current open file is closed

• File sequence count is incremented

• New file created and input packet is written

cFS Training- Page 126

DS Filter Table

cFS Training- Page 127

DS File Tables

cFS Training- Page 128

DS Input Packet Flow

cFS Training- Page 129

DS Configuration Parameters - 1

Configuration Parameter Description Default Value

DS_DESTINATION_TBL_NAME Logical name for the Destination File Table "FILE _TBL"

DS_DEF_DEST_FILENAME Default table filename — loaded at startup "/cf/appsids_file_tbl.tbl"

DS_DEST_FILE_CNT Number of file entries in Destination File Table 16

DS_PATHNAME_BUFSIZE Size of pathname buffer in cmds, tlm, tables OS_MAX_PATH_LEN (64)

DS_BASENAME_BUFSIZE Size of basename buffer in cmds, tlm, tables OS_MAX_PATH_LEN (64)

DS_EXTENSION_BUFSIZE Size of extension buffer in cmds, tlm, tables 8

DS_FILTER_TBL_NAME Logical name for the Packet Filter Table "FILTER _TBL"

DS_DEF_FILTER_FILENAME Default table filename — loaded at startup "/cf/apps/ds_filter_tbl.tbl"

DS_PACKETS_IN_FILTER_TABLE Number of packet entries in Packet Filter Table 256

DS_FILTERS_PER_PACKET Number of filters per packet table entry 4

cFS Training- Page 130

DS Configuration Parameters - 2

Configuration Parameter Description Default Value

DS_SEQUENCE_DIGITS Number of digits in sequence portion of filename 8

DS_MAX_SEQUENCE_COUNT Max filename sequence count before rollover 99999999

DS_TOTAL_FNAME_BUFSIZE Size of buffer to contain fully qualified filename OS_MAX_PATH_LEN (64)

DS_FILE_HDR_SUBTYPE
Common cFE file header subtype identifier for DS
files

12345

DS_FILE_HDR_DESCRIPTION Descriptive text for DS file secondary header "DS data storage file"

DS_FILE_MIN_SIZE_LIMIT
Smallest amount that may be set for file max size
limit

1024 (bytes)

DS_FILE_MIN_AGE_LIMIT
Smallest amount that may be set for file max age
limit

60 (seconds)

DS_APP_PIPE_NAME Logical name for DS application input pipe "DS _ CMD _PIPE"

DS_APP_PIPE_DEPTH Size of DS application input pipe 256 (packets)

DS_MAKE_TABLES_CRITICAL
If "1", cFE Table Services will store DS tables in
CDS

0

DS_SECS_PER_HK_CYCLE DS measures file age by counting HK cycles 5 (seconds)

cFS Training- Page 131

DS Commands

Command Description

No-op General DS aliveness test — verifies command handler and event generation

Reset Counters Reset DS application housekeeping telemetry counters

Set Enable State For Packet Processor Set enable/disable state for data storage packet processor

Set Destination File For Packet Filter Modify packet filter table entry — set destination file

Set Filter Type For Packet Filter Modify packet filter table entry — set filter type (sequence count vs time)

Set Filter Parms For Packet Filter Modify packet filter table entry — set filter parms (N, X, 0)

Set Filename Type For Destination File
Modify destination file table entry — set filename type (sequence count vs
time)

Set Enable State For Destination File Modify destination file table entry — set enable/disable state

Set Path Portion of Destination Filename Modify destination file table entry — set path portion of filename (string)

Set Base Portion of Destination Filename Modify destination file table entry — set base portion of filename (string)

Set Extension Portion of Destination Filename
Modify destination file table entry — set extension portion of filename
(string)

Set Max File Size For Destination File Modify destination file table entry — set max file size (bytes)

Set Max File Age For Destination File Modify destination file table entry — set max file age (seconds)

Set Filename Sequence Count For Destination File Modify destination file table entry — set filename sequence counter value

Close Destination File Close data storage file, file re-opened when next packet written to file

cFS Training- Page 132

DS Housekeeping Telemetry Message

133

133

National Aeronautics and Space Administration

File Manager (FM)

cFS Training- Page 134

FM Overview

• Provides a ground interface for:

– The management of onboard files

• Copying files, Moving files, Renaming files, Deleting files, Closing files

Decompressing files, and Concatenating files

• Providing file information

• Providing open file listings

– The management of onboard directories

• Creating directories

• Deleting directories

• Providing directory listings

– Device free space reporting

cFS Training- Page 135

FM Context Diagram

cFS Training- Page 136

FM Flow Control

cFS Training- Page 137

FM Configuration Parameters

• Mission

– Max number of onboard file systems (defaults to 3)

– Onboard File System Device Names

• Defaults

o “/ram”

o “/eep0”

o “/eep1”

• Platform

– Command default output filenames

• Directory Listing File (defaults to “/ram/fm_dirlist_file.dat”)

– Max full path specification character length (defaults to OS_MAX_PATH_LEN = 64)

– Max files in an open file listing (defaults to OS_MAX_NUM_OPEN_FILES = 128)

– Max files in a directory listing message (defaults to 20)

cFS Training- Page 138

FM Commands

Command Description

Noop
Increments the Command Accepted Counter and sends a debug event
message

Reset Command Counters
Initializes the following FM counters to 0:
Command Rejected Counter, Command Accepted Counter

File Copy
Copies the command-specified file to the command-specified destination file
or directory

File Move
Moves the command-specified file to the command-specified destination file
or directory

Rename File Renames the command-specified file to the command-specified file

Delete File Deletes the command-specified file, if and only if, the file is closed

Delete All Files
Deletes all files in the command-specified directory, if and only if, the files are
closed.

Decompress File
Decompresses the command-specified file creating the command-specified
destination file

Concatenate Files
Concatenates the command-specified source files creating the command-
specified destination file

File Information
Creates and sends a software bus message containing the file size, last
modification time, and file status (Open, Closed) of a given file, if and only if,
the file exists

cFS Training- Page 139

FM File Information Message

• CRC ground tool provided

Telemetry Point Description

FileStatus Status indicating whether the file is Open or Closed

CRC_Computed
Flag indicating if a CRC was computed on the command specified
file

<OPTIONAL> CRC Computed CRC of file contents

FileSize Size of file in bytes

LastModifiedTime System time the file was last modified

Filename Echo of command specified filename

cFS Training- Page 140

FM Commands - 2

Command Description

List Open Files
Creates and sends a software bus message containing the number
of open files, the name/path of each open file, and application
identifier associated with each open file

Create Directory Creates the command-specified directory

Delete Directory
Removes the command-specified directory, if and only if, the
command-specified directory is empty

Directory Listing via File
Writes to a file the complete listing of the command-specified
directory

Directory Listing via Message
Creates and sends a software bus message containing the contents
of a directory (up to <PLATFORM_DEFINED> filenames, starting at
the command-specified offset)

cFS Training- Page 141

FM Open File Listing Message

Telemetry Point Description

NumOpenFiles Number of open files in the FSW system

FileNames[1..n]
where n = <PLATFORM_DEFINED>
FM_MAX_OPEN_FILE_LIST_MSG_FILES

Names of open files in the FSW system

AppNames[1..n]
where n = <PLATFORM_DEFINED>
FM_MAX_OPEN_FILE_LIST_MSG_FILES

Names of applications that have files open in the FSW system

cFS Training- Page 142

FM Directory Listing File

• File Format

– Binary

• File Content

– cFE file header

• Header length

• Spacecraft ID

• Processor ID

• Application ID

• Creation Time (seconds and subseconds)

• File Description

– Echo of command-specified directory name

– Directory size in bytes

– Total number of files in the directory

– For each file contained in the directory:

• File Name

• File Size

• Last Modification Time

cFS Training- Page 143

FM Directory Listing Message

Telemetry Point Description

DirSize Directory size in bytes

DirOffset Echo of command specified directory offset

TotalFiles Total number of files contained in the command specified directory

FileSizes[1..n]
where n = <PLATFORM_DEFINED>
FM_MaxDirListMsgFiles

Sizes of the files contained within the command-specified directory
starting at the command specified offset

FileLastModTimes[1..n]
where n = <PLATFORM_DEFINED>
FM_MaxDirListMsgFiles

Last modification times of the files contained within the command-
specified directory starting at the command specified offset

DirName Echo of command specified directory name

FileNames[1..n]
where n = <PLATFORM_DEFINED>
FM_MaxDirListMsgFiles

Names of files contained within the command-specified directory
starting at the command-specified offset

cFS Training- Page 144

FM – Housekeeping Telemetry Message

Telemetry Point Description

CommandCounter Number of rejected commands

CommandErrCounter Number of accepted commands

NumOpenFiles Number of open files in the entire FSW system

BlockSize[1..n] Block size of drive n

NumBlocks[1..n]
where n = <MISSION_DEFINED>
FMMaxNumDevices

Number of available blocks on drive n

145

145

National Aeronautics and Space Administration

Housekeeping (HK)

cFS Training- Page 146

HK Overview

• Builds combined telemetry messages containing data from

system applications

– Sends notification when expected data is not received.

• Expected data is specified by table

cFS Training- Page 147

HK Context Diagram

HK & Combo

Packet

Requests

Ground or Stored

Commands

HK, TO,

DS

HK Packets

Combo Packets

Event Messages

HK

Software

Scheduler
Copy Table

Runtime Table

CI, SC

Any cFS

Application

HK Packets

SB
Subscribe to HK Pkts

cFS Training- Page 148

HK Copy Table File Format

cFS Training- Page 149

HK Flow Control

cFS Training- Page 150

HK Configuration Parameters

Parameter Description Default Value

Pipe Depth Depth of HK command pipe 40

of Copy Table Entries
Number of elements in the HK copy
table to process

128

bytes in memory pool
Number of bytes to allocate in the HK
memory 6144 pool (needed for the HK
output packets)

6144

Default HK Copy Table Name -- CopyTable

Default HK Runtime Table
Name

-- RuntimeTable

Default HK Copy Table Filename -- /cf/apps/hk_cpy_tbl.tbl

Mission Revision Mission-level revision number 0

cFS Training- Page 151

HK Commands

Command Description

No-Op
Increments the HK Command Accepted Counter and sends an info
event message

Reset Counters

Initializes the following counters to 0:
‐ Command Counter
‐ Command Error Counter
‐ Output Messages Sent
‐ Missing Data Counter

cFS Training- Page 152

HK Housekeeping Telemetry Message

Telemetry Point Description

Command Counter Number of accepted commands

Command Error Counter Number of rejected commands

Output Messages Sent Number of output messages sent

Missing Data Counter Number of times missing data from other apps was detected

Memory Pool Handle
Used to get memory pool statistics. The memory pools is used to
allocate memory for output messages.

153

153

National Aeronautics and Space Administration

Health & Safety (HS)

cFS Training- Page 154

HS Overview

• Performs Application Monitoring

– Detects when critical applications are not running and take a table defined action

• Performs Event Monitoring

– Detects critical events and take a table defined action

• Manages Watchdog

– Initializes and service the watchdog.

– Withholds servicing of the watchdog if certain conditions are not met.

• Manages CPU

– Reports CPU Utilization

– Detects CPU Hogging and take appropriate action

– Provides CPU Aliveness Indication

• Reports Table Defined Execution Counters

– Can include Application Main Tasks, Child Tasks, ISRs, and Device Drivers

cFS Training- Page 155

HS Application Monitoring

• Monitors the health of table specified applications

– Both cFE core applications and any cFS application

• How are they monitored?

– Use the counters maintained by ES in the CFE_ES_RunLoop function.

• Applications must call CFE_ES_RunLoop to increment the execution counter and let the system know
they are active.

• What are the response options for an application not running?

1. Perform Processor reset

• Sets Service_watchdog flag to FALSE

2. Restart Application

3. Send an Event message

4. Send Software Bus Message

• What happens if an app goes away or is restarted?

– There should be sufficient time to restart an app before it’s flagged as missing

– Application monitoring can be disabled during application updates/maintenance

– Application monitoring table can be reloaded if an application is permanently deleted

cFS Training- Page 156

HS – Event Monitoring

• Subscribe to all event messages

– Monitored events are table specified

• HS can take one of the following actions on events:

– Processor Reset

– Reset Application

– Delete Application

– Send Software Bus Message

• Event monitoring can be turned on or off by command

cFS Training- Page 157

HS Watchdog Management

• Watchdog must be initialized at startup

– BSP will program watchdog to a reasonable value to allow system to start

• Watchdog will be serviced as long as “Service_watchdog” flag is TRUE

• If HS is not running, the watchdog will expire causing a CPU reset.

• The “Service_watchdog” flag is set to FALSE if

– There is CPU hogging for more than <TBD, Configuration parameter > seconds

– There is a Critical Application Monitoring failure

• One of the above conditions should be enough to restart the system
before the watchdog expires

– Why bother with the watchdog then?

• If the software gets “stuck” then the watchdog will make sure it is reset.

• OS API will supply get timeout, set timeout, and service functions
separately

– HS will set the timeout to the default value when initializing, and service every
cycle

cFS Training- Page 158

HS CPU Management

• HS will perform the following CPU related functions:

– Reports CPU utilization information

• The CPU information comes from OS/BSP

o May have different implementations on different platforms

• Collects and report average CPU utilization over <TBD, Configuration Parameter> time

• Collects and report peak CPU utilization over <TBD, Configuration Parameter> time

– Provides CPU hogging indication

• If the CPU is at 100% start the “hogging” counter

• If hogging counter reaches <TBD, Configuration parameter > limit

o Send event / make syslog entry

o Set “Service_watchdog flag” to FALSE

o Processor Reset

– Provides CPU aliveness indication (output characters to UART)

• Enable/disable Command to output periodic heartbeat to UART

• Output characters are <TBD, Configuration parameter >

cFS Training- Page 159

HS –Execution Counter Reporting

• HS has a configurable number of execution counter entries in its housekeeping
telemetry message

– A Table specifies the counters that will be reported in in the housekeeping telemetry message.

– On every housekeeping request, HS copies the requested execution counters into the packet

• Where does HS get the execution counter status?

– ES Maintains execution counters for:

• cFE Core Apps

• cFS Apps

• Child Tasks

• Device Drivers/ISRs

– App Main Counters are incremented by calling CFE_ES_RunLoop

• The counters are different from heritage counters that incremented before and after the software bus

call.

– Child task counters are incremented by using an ES counter API

– Device Driver and ISR counters can be incremented with an ES counter API

– Counters are fetched by calling ES GetAppInfo and GetTaskInfo API functions

cFS Training- Page 160

HS Context Diagram

HK Requests,

Wake-Up

Ground or Stored

Commands

HK, TO,

DS

HK Packets

Event Messages

HS

OSAL

Software

Scheduler

CI, SC

ES

Any cFS

Application

App Info Message Actions

UART

CPU Aliveness,

Watchdog Management

HS Tables

All Event

Messages

EVS

Reset Requests

cFS

HS Idle

Child

Idle Counter

cFS Training- Page 161

HS – Flow Control

cFS Training- Page 162

HS Configuration Parameters - 1

Parameter Description Default Value

HS_MAX_EXEC_CNT_SLOTS Maximum Number of Execution Counters to be Reported 32

HS_MAX_MSG_ACT_TYPES Maximum Number of Message Action types 8

HS_MAX_MSG_ACT_SIZE Maximum Size of Message Action Message 16

HS_MAX_CRITICAL_APPS Maximum Number of Critical Applications to Monitor 32

HS_MAX_CRITICAL_EVENTS Maximum Number of Critical Events to Monitor 16

HS_WATCHDOG_TIMEOUT_VALUE
Default Watchdog timeout value in milliseconds to be set
when initializing

10000

HS_CPU_ALIVE_STRING String to output on UART “.”

HS_CPU_ALIVE_PERIOD How often to output CPU aliveness indicator 5

HS_MAX_RESTART_ACTIONS
How many times a Processor Reset can be performed by a
monitor failure

3

HS_CMD_PIPE_DEPTH Software bus command pipe depth 12

HS_IDLE_TASK_PRIORITY
Priority of the Idle Task being used for CPU Utilization
Monitoring

252

cFS Training- Page 163

HS Configuration Parameters - 2

Parameter Description Default Value

HS_UTIL_CALLS_PER_MARK
Number of (1 Hz) calls between capturing the Idle Task
Count

1

HS_UTIL_CYCLES_PER_INTERVAL
Number of HS cycles between calculating CPU
Utilization

1

HS_UTIL_PER_INTERVAL_TOTAL Number that signifies full utilization during one period 10000

HS_UTIL_PER_INTERVAL_HOGGING
Number that signifies CPU is being hogged in terms of
full utilization

9900

HS_UTIL_CONV_MULT1
HS_UTIL_CONV_DIV
HS_UTIL_CONV_MULT2

Utilization = Full Utilization —(((Idle Task Cycles *
MULT1) / DIV) * MULT2)

Determined by
Calibration

HS_UTIL_HOGGING_TIMEOUT
Number of Intervals for which hogging threshold must
be exceeded to result in hogging event message

5

HS_UTIL_PEAK_NUM_INTERVAL
Number of intervals over which to report the peak
value

64

HS_UTIL_AVERAGE_NUM_INTERVAL
Number of intervals over which to report the average
value

4

HS_UTIL_DIAG_MASK Used for calibration (how frequently to record time) 0xFFFFFFFF

HS_UTIL_DIAG_ARRAY_POWER
Used for calibration (how many time recordings are
stored)

4

cFS Training- Page 164

HS Commands - 1

Command Description

Noop Increment commands accepted counter and send event message

Reset Counters Reset housekeeping telemetry counters

Disable Critical Application Monitor Disables the monitoring and actions related to the critical application monitor.

Enable Critical Application Monitor
Enables and reinitializes the monitoring and actions related to the critical

application monitor.

Disable Critical Event Monitor Disables the critical event monitor function in HS

Enable Critical Event Monitor Enables the critical event monitor function in HS

Disable CPU Aliveness Indicator Stops the periodic output of characters to the UART.

Enable CPU Aliveness Indicator Starts the periodic output of characters to the UART.

Set Max Processor Resets
Sets the max number of processor resets HS can perform to provided

parameter value

Reset Processor Resets Counter Resets the current count of HS performed Processor Resets.

Disable CPU Hogging Indicator Stops the Hogging event from being sent

Enable CPU Hogging Indicator Allows the Hogging event to be sent

cFS Training- Page 165

HS Commands - 2

Command Description

Report Utilization Diagnostics
Reports the current Utilization Diagnostics information in an event
message

Set Utilization Parameters
Sets the calibration parameters used for Utilization Monitoring to
the specified parameters

Set Utilization Diagnostics Mask
Sets the mask value being used for collecting Utilization
Diagnostics information to a specified parameter

cFS Training- Page 166

HS Housekeeping Telemetry Message

Telemetry Point Description

HS CMDPC Count of valid commands received

HS CMDEC Count of invalid commands received

HS APPMONSTATE Status of Critical Application Monitor (enabled, disabled)

HS EVTMONSTATE Status of Event Monitor (enabled, disabled)

HS CPUALIVESTATE Status of Aliveness Indicator output (enabled, disabled)

HS CPUHOGSTATE State of CPU Hogging Indicator output (enable, disabled)

HS STATUSFLAGS Status flags for table loaded and CDS available states

HS PRRESETCNT Number of resets HS has performed so far

HS MAXRESETCNT Max number of resets HS is allowed to perform

HS EVTMONCNT Number of events monitored by the Event Monitor

HS INVALIDEVTAPPCNT Number of entries in Event Monitor Table that have unresolvable task names

HS APPMONENABLE[TBD] Application Monitor enable status by table entry

HS MSGACTCTR Number of message actions sent

HS CPUUTILAVG Average CPU Utilization

HS CPUUTILPEAK Peak CPU Utilization

HS EXECOUNT[TBD] Execution Counter Array

167

167

National Aeronautics and Space Administration

Limit Checker (LC)

cFS Training- Page 168

LC Overview

• Monitors table defined Watchpoints

• Each watchpoint compares a telemetry data value with a constant threshold

value

• Comparison result may be True, False, Error, or Stale

• Watchpoint results are stored in a dump-only table

• Evaluates table defined Actionpoints

• Each action point analyzes the results of one (or more) watchpoints

• Analysis result may be Pass, Fail, Error, or Stale

o If number of consecutive fails exceeds limit then send event and optionally invoke

RTS

• Actionpoint results are stored in a dump-only table

cFS Training- Page 169

LC Context Diagram

cFS Training- Page 170

LC Flow Control

cFS Training- Page 171

LC Scheduling

• Watchpoints

– Watchpoints are evaluated whenever a packet containing them arrives

• Actionpoints

– Actionpoints are processed only when an Actionpoint Sample Request is

received

– A Sample Request may target one or all actionpoints

– The Sample Request is an internal message and will not increment the

ground command counter

cFS Training- Page 172

LC Monitor Process

cFS Training- Page 173

LC Modes of Operation

Supports three operating modes that can be set by command:

1. Active

Normal Operation Mode. Performs all limit tests defined in the watchpoint

definition table and invokes stored command sequences as defined in the

actionpoint definition table when an actionpoint fails

2. Passive

Performs all limit tests, but no stored command sequences are invoked as

the result of actionpoint failures

3. Disabled

No watchpoint or actionpoint evaluations take place

cFS Training- Page 174

LC Custom Functions

• Custom functions can be used in place of a standard comparison operator in

watchpoint definitions

– If the comparison is designated “Custom” (instead of <, <=, !=, =, >, or >=), the

function stub LC_CustomFunction is called and passed the following parameters

• WatchIndex: The ID of the watchpoint for this call

• ProcessedWPData: Watchpoint data read from message. Sized as a uint32, masked, and

adjusted for any platform endian difference.

• MessagePtr: Pointer to the message. If the function needs raw watchpoint data it can use

this pointer to extract it.

• WDTCustomFuncArg: Custom function argument for this watchpoint from the watchpoint

definition table.

– LC_CustomFunction returns a True or False that is used as the result of the

comparison for the watchpoint that triggered the call

– Custom functions are added by modifying the source for LC_CustomFunction

• LC can have as many custom functions as monitor points

cFS Training- Page 175

LC Configuration Parameters

• Command Pipe Depth

• Maximum number of watchpoints

– Dictates the size of the Watchpoint Definition and Results Tables

• Maximum number of actionpoints

– Dictates the size of the Actionpoint Definition and Results Tables

• LC application state after power-on reset

• LC application state when CDS has been restored

• Default Watchpoint Definition Table (WDT) filename

• Default Actionpoint Definition Table (ADT) filename

• Maximum ADT reverse polish (RPN) equation size (operators and operands)

• Maximum ADT actionpoint event text string length

• Maximum RTS ID allowed during ADT validation

• Floating Point Comparison Tolerance

cFS Training- Page 176

LC Commands

Command Description

No-op
Increments the Command Accepted Counter and sends an event

message with application version information

Reset Counters Initializes housekeeping counters

Set LC State Sets the LC application state (Active, Passive, Disabled)

Set AP State Sets the state of one or all actionpoints (Active, Passive, Disabled)

Set AP Permanently Off
Sets the state of a single actionpoint to permanently off (requires

table load to restore)

Reset AP Statistics
Reset statistics in the Actionpoint Results Table (ART) for one or all
actionpoints

Reset WP Statistics
Reset statistics in the Watchpoint Results Table (WRT) for one or all
watchpoints

cFS Training- Page 177

LC Housekeeping Telemetry Message

Telemetry Point Description

CmdCount Number of accepted ground commands

CmdErrCount Number of rejected ground commands

APSampleCount Total count of actionpoints sampled

MonitoredMsgCount Total count of messages monitored

RTSExecCount Total count of RTS sequences initiated

PassiveRTSExecCount

Total count of RTS sequences not initiated because either the LC

application state or the state of the actionpoint that failed is set

to Passive

WPsInUse How many watchpoints are currently defined

ActiveAPs How many actionpoints are currently set active

CurrentLCState Current LC application operating state (Active, Passive, Disabled)

WPResults Packed subset of Watchpoint Results Table (see next slide)

APResults Packed subset of Actionpoint Results Table (see next slide)

cFS Training- Page 178

LC Housekeeping Results Data

• WPResults

– Byte array with 2 bits per watchpoint (aligned to nearest longword

boundary)

– Most recent watchpoint comparison result (2 bits)

• 0 = False, 1 = True, 2 = Error, 3 = Stale

– Ordering: (Rwp3, Rwp2, Rwp1, Rwp0), (Rwp7, Rwp6, Rwp5, Rwp4), etc...

• APResults

– Byte array with 4 bits per actionpoint (aligned to nearest longword

boundary)

– Actionpoint current state (2 bits)

• 0 = Unused or Permanently Off, 1 = Active, 2 = Passive, 3 = Disabled

– Most recent actionpoint analysis result (2 bits)

• 0 = Pass, 1 = Fail, 2 = Error, 3 = Stale

– Ordering: (Sap1, Rap1, Sap0, Rap0), (Sap3, Rap3, Sap2, Rap2), etc...

179

179

National Aeronautics and Space Administration

Memory Dwell (MD)

cFS Training- Page 180

MD Overview

• Samples and reports data from any memory address

- Used to augment telemetry stream provided during development

- Supports debugging efforts

• Dwell packet streams are specified by Dwell Tables

– Up to four active Dwell Tables

• The size of the Dwell Tables is defined by a configuration parameter

• Each entry contains:

o Memory Address

• <OPTIONAL>Provide Support for Symbolic Addressing

o # Bytes to Read (1..4)

o Delay until Next Dwell (in multiples of wake-up call rate)

• Dwell Tables can be populated either by Table Loads or via Jam Commands

– Each active table generates a telemetry message at the scheduled
wake-up frequency (dwell rate)

• Size of the message is based on the number of table specified memory
addresses

cFS Training- Page 181

Numerical Address and

Valid/Not Valid Indicator

MD Context Diagram

Symbolic Address and

Resolved Address

Ground or Stored

Commands

HK, TO,

DS

HK Packets

Event Messages

Dwell Packets

MD

OSAL

Wakeup Messages,

HK Requests

Software

Scheduler

CI, SC

Dwell Table

Specifications

cFS Training- Page 182

MD Flow Control

cFS Training- Page 183

MD – Dwell Tables

cFS Training- Page 184

MD Dwell Example

cFS Training- Page 185

MD – Configuration Parameters

• Command Pipe Depth

• Number of Dwell Tables

• Size of Dwell Tables

• Enforce Double Word Alignment

• Signature Option

• Signature Length

cFS Training- Page 186

MD Commands

cFS Training- Page 187

MD Housekeeping Telemetry Message

188

188

National Aeronautics and Space Administration

Memory Manager (MM)

cFS Training- Page 189

• Performs Memory Read and Write (Peek and Poke) Operations

– Peek 8, 16, or 32 bits of data

– Poke 8, 16, or 32 bits of data

• Performs Memory Load and Dump Operations

– Memory load with interrupts disabled

– Memory load from a file

– Memory dump to a file

– Dump memory in an event message

• Performs Diagnostic Operations

• Memory fill

• <OPTIONAL> Load or dump address range with forced 8, 16, or 32 bit wide access

• <OPTIONAL> Provide Support for Symbolic Addressing

• Any address can be referenced via a symbol name

• Dump system symbol table or lookup symbol address

MM Overview

Segmented to prevent CPU hogging

cFS Training- Page 190

MM Context Diagram

Ground or Stored

Commands

HK, TO,

DS

HK Packets

Event Messages

MM

HK

Requests

Software

Scheduler

CI, SC

OSAL

Dump

and

Load

Files

RAM

EEPROM

Memory

Mapped

Hardware

Load/Dump

cFS Training- Page 191

MM Memory Types - 1

• Standard Memory Types

– RAM

– EEPROM

• Any write alignment requirements for EEPROM are handled inside the OS abstraction

layer for the target platform in question and are transparent to MM

• Special Types (can be conditionally compiled in when needed)

– MEM8

• Forces memory read and writes in 8 bit chunks only

– MEM16

• Forces memory read and writes in 16 bit chunks only

– MEM32

• Forces memory read and writes in 32 bit chunks only

– Specified byte counts and addresses must be properly aligned for these memory

types or an error event message will be generated and the operation aborted

• Memory mapped I/O is accessed as RAM (or as MEM32/16/8 when

special data alignment is required)

cFS Training- Page 192

MM Memory Types - 2

Type3 Calls Used

Address and

Data Size

Alignment

Forced by MM

Peek/Poke

via

command

File

support

(load/dump

from file?)

Multiple bytes

with interrupts

disabled?

Symbolic

Addressing (if

applicable)4

Fill

RAM CFE_PSP_MemCpy1 No Yes Yes Yes Yes Yes

EEPROM CFE_PSP_MemCpy2 No Yes Yes No Yes Yes

MEM32 OS_MemRead32
OS_MemWrite32

Yes
Yes Yes No

Yes Yes

MEM16 OS_MemReadl6
OS_MemWrite16

Yes
Yes Yes No

Yes Yes

MEM8 OS_MemRead8
OS_MemWrite8

Yes
Yes Yes No

Yes Yes

1 Memory mapped I/O that is byte addressable and requires no special code support will be accessed as standard RAM

2 The CFE_PSP_MemCpy routine handles hardware-specific data alignment requirements for EEPROM writes. MM

enables/disables EEPROM write protection (from ground command request) via calls to the cFE PSP.

3 MEM32, MEM16, and MEM8 memory types are optional and can be compiled out of MM.

4 Symbolic addressing is optional. In order to simplify the code, the infrastructure will be there within commands/telemetry

definitions regardless of whether a platform supports it or not. However, if a platform does not support symbolic addressing

and someone tries to use symbolic addressing, MM will report the error.

cFS Training- Page 193

MM File Formats

• Memory Load File

– Binary File

• Includes cFE file header with secondary file header containing:

o Destination Address Symbolic Name

o Destination Address Offset

o Destination Memory Type

o Number of Load Bytes

o Data Integrity Value (CRC on load data)

• Memory Dump File

– Binary File

• Includes cFE file header with secondary file header containing:

o Address Symbolic Name (NUL string)

o Source Address (fully resolved, absolute address)

o Source Memory Type

o Number of Bytes Dumped

o Data Integrity Value (CRC on dumped data)

• Dump and load files use the same format so dump files can be loaded
back into memory if desired

cFS Training- Page 194

MM Flow Control

cFS Training- Page 195

MM – Configuration Parameters

• CRC type

– interrupt disabled loads

– File loads

– File dumps

• Load Parameters

– Maximum number of bytes for a file load to:

– Maximum number of bytes for an uninterruptable load

– Maximum number of bytes to segment load operations into to avoid CPU hogging

• Dump Parameters

– Maximum number of bytes for a file dump from:

– Maximum number of bytes to segment dump operations into to avoid CPU hogging

– The number of bytes that can be dumped in an event message is based on the maximum
event message string length specified by the cFE configuration parameter
CFE_EVS_MAX_MESSAGE_LENGTH

• Fill Parameters

– Maximum number of bytes for a memory fill operation to:

– Maximum number of bytes to segment fill operations into to avoid CPU hogging

• Optional Memory Types

– Include/Exclude MEM32, MEM16, or MEM8 optional memory types

cFS Training- Page 196

MM Commands - 1

Command Description

Noop
Increments the Command Accepted Counter and sends a debug
event message

Reset Counters Initializes housekeeping counters to zero

Memory Peek
Reads 8, 16, or 32 bits of data from any address and reports the
data in an event message

Memory Poke Writes 8, 16, or 32 bits of data to any address

Load Memory With Interrupts
Disabled

Loads data into memory with CPU interrupts disabled during the
load

Memory Load From File Loads memory contents from a file

Memory Dump To File Dumps memory contents from memory to a file

Dump Memory In Event

Dumps a series of data bytes from memory into telemetry as ASCII
characters in an event message. The maximum number of bytes
that can be transferred is limited to the maximum event message
string length specified in the cFE configuration parameters

cFS Training- Page 197

MM Commands - 2

Command Description

Memory Fill
Loads memory with a 32 bit fill pattern. For MEM16 and MEM8
memory types only the least significantword (MEM16) or byte
(MEM8) of the fill pattern is used.

Lookup Symbol
Looks up a symbol name in the system symbol table and reports
the resolved address in an event message and housekeeping

Save Symbol Table To File
Saves the system symbol table to an onboard file if the operation is
supported by the target operating system

cFS Training- Page 198

MM Housekeeping Telemetry Message

Telemetry Point Description

CmdCounter Number of accepted ground commands

ErrCounter Number of rejected ground commands

LastAction Last command action executed

MemType Memory type for last command

Address Fully resolved address used for last command

FillPattern Fill pattern used if memory fill command was issued

BytesProcessed Bytes processed for last command

FileName[OS MAX PATH LEN] Name of the data file used for last command, when applicable

199

199

National Aeronautics and Space Administration

Software Bus Network (SBN)

cFS Training- Page 200

SBN Overview

• Transparently connects Software Bus local systems

– Multi-processor, multi-core, partitions, distributed systems

– Applications have no knowledge of destination

– Requires a single namespace (unique message IDs across system)

• Peer to Peer, no bus master

• Heartbeat algorithm to detect failed nodes

• Optional recognition and retransmission of missed packets

• Latest version with plug-in network interface software modules

– Currently supports UDP/IP, Shared memory, and RS422 serial

• JSC has ARINC 653 partition support

• Planned support for SpaceWire, Time-Triggered Ethernet and TTP/C

– In process of being released

• Supports communications scheduling for synchronous system

behaviors

• Latest version available on babelfish

cFS Training- Page 201

Module/Plug-In Architecture

• Application layer is interface independent, handles message

protocol: message routing, heartbeating, etc.

• Hardware interface layer uses libraries to handle interface-

specific functions

• All hardware interaction is done via interface “modules”

(implemented as libraries)

• Module/plug-in architecture allows:

– Easy customization for different platforms

– Easy to add support for new hardware interfaces

– Possible in-flight modification of peers and/or modules (not currently

supported, but a future expansion)

Application Layer

HW Interface Layer
SBN

cFS Training- Page 202

Module/Plug-In Architecture

• All interface modules support a common API

• Each module can specify custom configuration parameters and

custom housekeeping telemetry

• Modules are loaded by SBN on application startup

– Requires dynamic loading

cFS Training- Page 203

Module API

• All interface modules must support the following functions:

– Parse File Entry

– Initialize Peer Interface

– Send Net Message

– Check for Net Protocol Message

– Receive Message

– Verify Peer Interface

– Verify Host Interface

– Report Module Status

– Reset Peer

– Delete Host Resources

– Delete Peer Resources

• Function pointers are stored in a structure in the module source code.

• The name of the structure is included in the SbnModuleData.dat file

• The SBN application does an object load to get the operations

structure

cFS Training- Page 204

SBN Context

All Other

cFS

Apps

Software

Bus

Network

Processor 1 Processor 2

All Other

cFS

Apps

Software

Bus

Network

Hardware InterfaceHardware

Interface

Module

Hardware

Interface

Module

cFS Training- Page 205

SBN Startup

SBN Application Startup

Load SbnModuleData.dat

Load SbnPeerData.dat

Enter “Announcing” State

Send “Announce” Message

Got

Announce

Ack?

No

Enter “Heartbeating” State

Yes

Send “Heartbeat” Message

Got

Heartbeat

Ack?

Send Data Messages

No

Yes

cFS Training- Page 206

SBN Message Types

• Protocol Messages – Messages sent to establish and maintain

link between peers.

– Announce – Announces presence to peers to establish link

– Announce Acknowledge – Acknowledgement sent to a peer after

receiving an announce message from that peer

– Heartbeat – Aliveness message sent to all peers to maintain link

– Heartbeat Acknowledge – Acknowledgement sent to a peer after

receiving a heartbeat message from that peer

• Data Messages – Actual Software Bus messages routed

between peers

cFS Training- Page 207

SBN Peer Configuration

• Peer configuration has 2 parts – peers and interface types

• Peer and module configurations are specified in text files

• SbnModuleData.dat specifies interface modules in use by SBN

– Protocol ID, Module Location, Interface Structure

• SbnPeerData.dat specifies peers connected to this processor

and correlates each peer with an interface type

– Peer Name, Processor ID, Protocol ID, SpaceCraft ID, Protocol

Parameters

• Each Protocol ID must match a protocol ID listed in SbnModuleData.dat

• Protocol parameters vary according to the Protocol ID

cFS Training- Page 208

SBN Peer Configuration Example

SbnPeerData.dat

CPU1, 1, 1, 0, 192.168.1.76, 15820, 5821;

CPU2, 2, 1, 0, 192.168.1.77, 15820, 5822;

CPU3, 3, 1, 0, 192.168.1.78, 15820, 5823;

SbnModuleData.dat

1, IPv4, /cf/apps/ipv4.so, IPv4Ops; CPU1 CPU2

CPU3

Ethernet

Ethernet Shared Memory

192.168.1.76 192.168.1.77

192.168.1.78

SbnPeerData.dat

CPU1, 1, 1, 0, 192.168.1.76, 15820, 5821;

CPU2, 2, 1, 0, 192.168.1.77, 15820, 5822;

CPU2, 2, 5, 0, 0xfffe9000, 0x1000, 0xfffe8000, 0x1000, 0xfffeb000, 0x1000, 0xfffea000, 0x1000;

CPU3, 3, 5, 0, 0xfffe8000, 0x1000, 0xfffe9000, 0x1000, 0xfffea000, 0x1000, 0xfffeb000, 0x1000;

SbnModuleData.dat

1, IPv4, /cf/apps/ipv4.so, IPv4Ops;

5, ShMem, /cf/apps/shmem.so, ShMemOps;

SbnPeerData.dat

CPU1, 1, 1, 0, 192.168.1.76, 15820, 5821;

CPU3, 3, 1, 0, 192.168.1.78, 15820, 5823;

CPU2, 2, 5, 0, 0xfffe9000, 0x1000, 0xfffe8000, 0x1000, 0xfffeb000, 0x1000, 0xfffea000, 0x1000;

CPU3, 3, 5, 0, 0xfffe8000, 0x1000, 0xfffe9000, 0x1000, 0xfffea000, 0x1000, 0xfffeb000, 0x1000;

SbnModuleData.dat

1, IPv4, /cf/apps/ipv4.so, IPv4Ops;

5, ShMem, /cf/apps/shmem.so, ShMemOps;

cFS Training- Page 209

SBN Configuration Parameters

Parameter Default Description

SBN_SUB_PIPE_DEPTH 256 Depth of SBN subscription pipe

SBN_VOL_PEER_FILENAME “/ram/apps/SbnPeerData.dat” Location of peer configuration file in volatile memory

SBN_NONVOL_PEER_FILENAME “/cf/apps/SbnPeerData.dat” Location of peer configuration file in nonvolatile memory

SBN_PEER_FILE_LINE_SIZE 128 Maximum line length in peer configuration file

SBN_MAX_NETWORK_PEERS 4 Maximum number of peers

SBN_VOL_MODULE_FILENAME “/ram/apps/SbnModuleData.dat” Location of module configuration file in volatile memory

SBN_NONVOL_MODULE_FILENAME “/cf/apps/SbnModuleData.dat”
Location of module configuration file in nonvolatile
memory

SBN_MODULE_FILE_LINE_SIZE 128 Maxmum line length in peer configuration file

SBN_MAX_INTERFACE_TYPES 6 Maximum number of interface types

SBN_MOD_STATUS_MSG_SIZE 128 Maximum number of bytes in a module status message

SBN_MAX_MSG_RETRANSMISSIONS 3
Number of times the SBN will try to retransmit a missed
message

cFS Training- Page 210

SBN Commands

Command Description

Noop
Increments the Command Accepted Counter and sends a debug event
message

Reset Command Counters
Initializes the following SBN counters to 0:
Command Rejected Counter, Command Accepted Counter, Peer Send/Receive
counters

Get Peer List Gets a list of all peers recognized by the SBN.

Get Peer Status
Get status information on the specified peer. Information format is based on
the interface type of the peer.

Reset Peer Resets a specified peer.

cFS Training- Page 211

SBN Housekeeping Telemetry

Telemetry Point Description

CmdCount Number of commands accepted by the SBN application

CmdErrCount Number of commands rejected by the SBN application

PeerAppMsgRecvCount[SBN_MAX_NETWORK_PEERS] Number of application messages received by each peer

PeerAppMsgSendCount[SBN_MAX_NETWORK_PEERS] Number of application messages sent by each peer

PeerAppMsgRecvErrCount[SBN_MAX_NETWORK_PEERS] Number of application message receive errors for each peer

PeerAppMsgSendErrCount[SBN_MAX_NETWORK_PEERS] Number of application message send errors for each peer

PeerProtoMsgRecvCount[SBN_MAX_NETWORK_PEERS] Number of protocol messages received by each peer

PeerProtocolMsgSendCount[SBN_MAX_NETWORK_PEERS] Number of protocol messages sent by each peer

PeerProtocolMsgRecvErrCount[SBN_MAX_NETWORK_PEERS] Number of protocol message receive errors for each peer

PeerProtocolMsgSendErrCount[SBN_MAX_NETWORK_PEERS] Number of protocol message send errors for each peer

212

212

National Aeronautics and Space Administration

Scheduler (SCH)

cFS Training- Page 213

SCH Overview

• Provides method of generating messages at pre-determined

timing intervals

– Operates in a Time Division Multiplexed (TDM) fashion with deterministic

behavior

• Synchronized to external Major Frame cFE TIME 1 Hz signal

• Each Major Frame split into a platform configuration number of smaller slots

(typically 100 slots of 10 milliseconds each)

o Each slot can contain a platform configuration number of software bus messages that

can be issued within that slot

cFS Training- Page 214

SCH Context Diagram

Ground or Stored

Commands

CI, SC

HK, TO,

DS

HK Packets

Event Messages

SCH

Schedule

Definition

Table

Message

Definition

Table

OSAL

Minor Frame

Timing Control

and Notification

HW Timer

SCH Library

Enable/Disable

Schedule

Processing

Message

Content

Definition

Schedule of

Message

Generation

Any cFS

App

Schedule Msgs

cFE Time

MajorFrame

Timing Control

and Notification

cFS Training- Page 215

SCH Flow Control

cFS Training- Page 216

SCH Schedule Table Processor

cFS Training- Page 217

SCH – Activity Messages

cFS Training- Page 218

SCH Configuration Parameters - 1

Parameter Description Default Value

SCH_PIPE_DEPTH Software bus command pipe depth 12

SCH_TOTAL_SLOTS Minor Frame Frequency (in Hz) 100

SCH_ENTRIES_PER_SLOT
Maximum Activities per slot 5

SCH_MAX_MESSAGES Maximum Number of Message Definitions in

Message Table
128

SCH_MDT_MIN_MSG_ID Minimum Message ID allowed in Message

Definition Table
0

SCH_MDT_MAX_MSG_ID
Maximum Message ID allowed in Message

Definition Table
CFE_SB_HIGHEST_VALID_MSGID

SCH_MAX_MSG_WORDS
Maximum Length, in Words, of a Message in the

message table
64

SCH_MAX_LAG_COUNT
Maximum Number of slots allowed for catch-up

before skipping
(SCH_TOTAL_SLOTS/2)

SCH_MAX_SLOTS_PER_WAKEUP
Maximum Number of Slots to be processed when

in "Catch Up" mode
5

SCH_MICROS_PER_MAJOR_FRAME
Conversion factor for how many microseconds in a

wake-up period
10000000

cFS Training- Page 219

SCH Configuration Parameters - 2

Parameter Description Default Value

SCH_SYNC_SLOT_DRIFT_WINDOW
Additional time allowed in Sync Slot to

wait for Major Frame Sync
5000

SCH_STARTUP_SYNC_TIMEOUT
Timeout on waiting for all applications to

start at initialization
50000

SCH_STARTUP_PERIOD
Number of microseconds to attempt

major frame synchronization
(5*SCH_MICROS_PER_MAJOR_FRAME)

SCH_MAX_NOISY_MAJORF
Maximum noisy major frames prior to

desynchronization
2

SCH_LIB_PRESENCE Presence of SCH Library 1

SCH_LIB_DIS_CTR Processing disabled counter at startup 0

SCH_SCHEDULE_FILENAME
Default schedule table filename to load at

startup
“/cf/apps/sch _def_schtbl.tbl”

SCH_MESSAGE_FILENAME
Default message table filename to load at

startup
“/cf/apps/sch _def_msgtbl.tbl"

SCH_MISSION_REV Mission revision number 0

cFS Training- Page 220

SCH Commands

Command Description

No-op
Increments the Command Accepted Counter and sends a debug event
message

Reset Counters Initializes housekeeping counters to zero

Enable Entry Enables an entry in the Schedule Definition Table

Disable Entry Disables an entry in the Schedule Definition Table

Enable Group and/or Multi-

Group(s)
Enables a group and/or multi-group(s) of entries in the Schedule
Definition Table

Disable Group and/or Multi-

Group(s)
Disables a group and/or multi-group(s) of entries in the Schedule
Definition Table

Enable Sync
Enables usage of Major Frame Signal if previously autonomously
disabled for being "noisy"

Send Diagnostic Tim

Generates and sends the SCH Diagnostic Telemetry Packet that

contains the current state of all activities defined in the Schedule

Definition Table

cFS Training- Page 221

SCH Housekeeping Telemetry Message - 1

Telemetry Point Description

CommandCounter Number of accepted ground commands

CommandErrCounter Number of rejected ground commands

ScheduleActivitySuccessCounter Number of scheduled activities processed

ScheduleActivityFailureCounter Number of scheduled activities failed due to error

SlotsProcessedCounter Number of schedule slots processed

SlotsSkippedCounter Number of instances when one or more slots were skipped

MultipleSlotsCounter Number of instances when two or more slots were processed at once

SameSlotCounter Number of instances when SCH woke up in the same time slot as previously

BadTableDataCount Number of table entries with an error that have been encountered

TableVerifySuccessCount Number of successful table verifications performed

TableVerifyFailureCount Number of failed table verifications performed

TablePassCounter Number of times Schedule Table was completely processed

ValidMajorFrameCount Number of Valid Major Frame Signals received

MissedMajorFrameCount Number of Major Frame Signals that did not occur when expected

UnexpectedMajorFrameCount Number of Major Frame Signals that occurred when nor expected to occur

MinorFramesSinceTone Number of Minor Frames processed since last Major Frame

cFS Training- Page 222

SCH Housekeeping Telemetry Message - 2

Telemetry Point Description

NextSlotNumber The next slot to be processed in the Schedule Definition Table

LastSyncMETSlot Slot Number when last Time Synchronization occurred

IgnoreMajorFrame Major Frame Signals are ignored because they are deemed "noisy"

UnexpectedMajorFrame Last Major Frame Signal occurred when not expected

SyncToMET Minor Frames are synchronized to MET.

MajorFrameSource Identifies the source of the Major Frame Signal (timer, MET, etc)

223

223

National Aeronautics and Space Administration

Stored Command (SC)

cFS Training- Page 224

SC Overview

• Provides services to execute preloaded, table defined command

sequences at predetermined absolute or relative time intervals

– Supports two types of time tagged command sequences

• ATSs are command sequences timed to execute at some absolute point in

time, as measured by the configured time

o Supports 2 ATSs

o One second granularity

o Records table processing status in a dump-only status table

• RTSs are command sequences which execute at some point in time, relative

to the previous command in the relative time command sequence

o Supports <platform defined> RTSs

o One second granularity

o Records table processing status in a dump-only status table

cFS Training- Page 225

SC Context Diagram

Ground/Stored

Commands

SC

CI/SC

HK, TO,

DS

HK Packets

Event Messages

SC

HK

Requests

SCH

ATS Tables

Start RTS

Commands

ATS Status

Tables

RTS Status

Tables

RTS Tables

Any cFS

Application

Stored Commands

ATS Append

Table

Read/Write

Read

cFS Training- Page 226

SC ATS Table Processor

• The ATS Processor manages the execution of the Absolute Time
Sequences

• The ATS Processor manages two buffers of ATSs

• Only one ATS can be active at one time

• The ATS Processor can be controlled by requests from the
ground

– Start an ATS

– Stop an ATS

– Switch the ATS buffer

– Jump within an ATS

– Continue on ATS Failure

– Append ATS

cFS Training- Page 227

SC RTS Table Processor

• The RTS Processor is controlled by requests from:

– Ground

– FSW applications (LC, HK)

• The RTS Processor can be commanded to:

– Start an RTS

– Stop an RTS

– Enable an RTS

– Disable an RTS

• RTS #1 is executed at initialization

– Contain the startup sequence

cFS Training- Page 228

SC Status Tables

ATS Status Tables Parameters

SC AtsCmdStatuslndexTable
Array of unsigned bytes which are the number of ATS buffers multiplied by the
number of ATS commands. LOADED, EMPTY, EXECUTED etc

SC_AtpControlBlock_t

ATP execution state of the ATP

ATS number currently running if any

ATS Command number to run if any

Time index pointer for the current command

Switch Pend Flag

SC_AtsInfoTable_t

Number of commands in the ATS

Size of the ATS

How many time the ATS has been used

RTS Status Tables Parameters

SC RtpControlBlock t
Number of RTSs currently active

Next RTS number to execute

SC RtslnfoEntry t

Status of the RTS

Disabled/Enabled flag for the current RTS

Next command time for an RTS

Where the next RTS command is in the buffer

Number of Errors in the current RTS

How many times an RTS ran

cFS Training- Page 229

SC Flow Control

cFS Training- Page 230

SC Configuration Parameters - 1

Parameter Description Default Value

SC_MAX_CMDS_PER_SEC
Maximum number of commands that can be sent out by SC in any
given second

8

SC_NUMBER_OF_RTS The number of RTS's allowed in the system 64

SC_ATS_BUFF_SIZE The max sizeof an ATS buffer in words (not bytes) 8000

SC_APPEND_BUFF_SIZE The max sizeof an Append ATS buffer in words (not bytes) 4000

SC_RTS_BUFF_SIZE The max size of an RTS buffer in WORDS (not bytes) 150

SC_MAX_ATS_CMDS The maximum number of commands that are allowed in each ATS 1000

SC_LAST_RTS_WITH_EVENTS
When all RTS's are started, the SC_RTS_START_INF_EID event
message is sent out. This parameter suppresses that message for
all RTS's over this number

20

SC_PACKET_MIN_SIZE
This parameter specifies the maximum size for an ATS or RTS
command

250

SC_PIPE_DEPTH
Maximum number of messages that will be allowed in the SC
command pipe at one time

12

SC_ATS_FILE_NAME Base filename for the ATS tables loaded at startup /cf/apps/sc_ats

SC_APPEND_FILE_NAME Default append ATS filename loaded at startup /cf/apps/sc_append.tbl

SC_RTS_FILE_NAME Base filename for the RTS tables loaded at startup /cf/apps/sc_rts

cFS Training- Page 231

SC Configuration Parameters - 2

Parameter Description Default Value

SC_ATS_TABLE_NAME Base name for unique ATS table object names ATS_TBL

SC_APPEND_TABLE_NAME Unique table object name for the Append ATS table APPEND_TBL

SC_RTS_TABLE_NAME Base name for unique RTS table object names RTS_TBL

SC_RTSINFO_TABLE_NAME Name of the RTS Information Table RTSINF_TBL

SC_RTP_CTRL_TABLE_NAME Name of the RTP Control Block Table RTPCTR_TBL

SC_ATSINFO_TABLE_NAME Name of the ATS Information Table ATSINF_TBL

SC_APPENDINFO_TABLE_NAME Name of the Append ATS Information Table APPINF_TBL

SC_ATS_CTRL_TABLE_NAME Name of the ATP Control Block Table ATPCTR_TBL

SC_ATS_CMD_STAT_TABLE_NAME The prefix of the ATS Command Status table names ATSCMD_TBL

SC_CONT_ON_FAILURE_START
Specifies the default state to continue an ATS when a command in
the ATS fails checksum validation

TRUE

SC_TIME_TO_USE Defines the TIME SC should use for its commands SC_USE_CFE_TIME

SC_ENABLE_GROUP_COMMANDS Specifies the inclusion state RTS group commands TRUE

SC_MISSION_REV Mission specific revision number 0

cFS Training- Page 232

SC Commands - 1

Command Description

No-op Increments the command counter and generates an informational event

Reset counters Resets telemetry counters to zero

Start ATS Start the specified ATS

Stop ATS Stop the current executing ATS

Switch ATS Switch from the currently executing ATS to the alternate ATS

ATS Jump
Jump to a specified time in the currently running ATS. All commands

prior to the specified jump time will not be executed

Continue ATS Execution
On A Checksum Failure

Sets the status of the CONTINUE ATS ON FAILURE flag. When the SC

Flight Software encounters a failure in the execution of ATS it shall

continue or abort the ATS execution based on the status of

CONTINUE ATS ON FAILURE

Append ATS Append the contents of the Append Table to the specified ATS

cFS Training- Page 233

SC Command - 2

Command Description

Enable RTS Enable the specified RTS for execution

Disable RTS Disable the specified RTS

Start RTS Start the specified RTS

Stop RTS Stop the specified RTS

cFS Training- Page 234

SC Housekeeping Telemetry Message - 1

Telemetry Point Description

CmdErrCtr Number of ground commands aborted

CmdCtr Number of ground commands successfully executed

AtpFreeBytes[0] Number of free bytes in ATS A

AtpFreeBytes[1] Number of free bytes in ATS B

AtsNumber Currently executing ATS (none, A , B)

AtpState Current ATS state: IDLE, EXECUTING

AtpCmdNumber Next ATS command number

AtsNumber Current ATS Number: NONE , ATS A , ATS B

cFS Training- Page 235

SC Housekeeping Telemetry Message - 2

Telemetry Point Description

SwitchPendFlag Indication of ATS switch pending

NextAtsTime Next ATS command time in seconds

ContinueAtsOnFailure
When the SC Flight Software encounters a failure in the execution
of ATS it shall continue or abort the ATS execution based on the
status of this flag

RtsActivErrCtr Total count of all failed RTS activation attempts

RtsActivCtr Total count of all RTSs successfully activated

RtsNumber The next RTS command will come from this RTS

NextRtsTime The configured when the next RTS command will execute

RtsExecutingStatus

This is a bit map consisting of an even number of unsigned words
with one bit for each RTS. There are <platform defined>/16 or 16
unsigned words. The least significant bit of word 0 represents the
bit for RTS 1, the MSB of word 0 is for RTS 16

AtpCommandNumber Next ATS command number

AtpCommandCtr

The number of commands sent out by all ATSs. This value reflects
the cumulative error count for all ATS commands sent from the ATS
processor, until the counter rolls over or is reset. It is not reset by
starting a new ATS

cFS Training- Page 236

SC Housekeeping Telemetry Message - 3

cFS Training- Page 237

SC Housekeeping Telemetry Message - 3

Telemetry Point Description

AtsCmdErrCtr

The number of commandswith errors for all ATSs. This value reflects the cumulative

error count of all ATSs run, until the counter rolls over or is reset. It is not reset by

starting a new ATS

LastAtsErrCmd
The ID of the lastATC which caused an error. This value is not reset by stopping the

current ATS, starting a new ATS or sending the reset command

LastAtsErrSeq The ATS that contained the last error (none, A , B)

LastRtsErrCmd

The word offset of the last RTS command which caused an error. This value is not

reset by stopping the current RTS, starting a new RTS or sending the reset

command.

RtsCmdErrCtr

The number of commands with errors for ALL RTSs. This value reflects the

cumulative count for all RTS commands with errors, until the counter rolls over or is

reset

RtsCmdCtr
The number of commands sent out by ALL RTSs. This value reflects the cumulative

count for all RTS commands sent, until the counter rolls over or is reset

LastRtsErrSeq

The RTS sequence number of the last RTS command which caused an error. This

value is not reset by stopping the current RTS, starting a new RTS or sending the

reset command

cFS Training- Page 238

SC Housekeeping Telemetry Message - 4

Telemetry Point Description

RtsDisabledStatus This is the same as the executing bit map where 0 = ENABLED and 1 = DISABLED.

NumRtsActive Number of active RTSs

AppendAtsiD The last ATS that was appended (none, A , B)

AppendSize The size (in bytes) of the commands loaded in the Append Table

AppendCount The number of commands in the Append Table

AppendLoads The total number of loads performed to the Append Table

cFS Training- Page 239

cFS Components Metrics

• Two scopes of configuration parameters: mission or processor

• Configuration parameters span a large functional range from a simple default file

name to a system behavioral definition like the time client/server configuration

Component Version Logical Lines of Code Configuration Parameters

Core Flight Executive 6.4.0 12930

General: 17, Executive Service: 46

Event Service: 5, Software Bus: 29

Table Service: 10, Time Service: 32

CFDP 2.2.1 8559 33

Checksum 2.2.0 2873 15

Data Storage 2.3.0 2429 27

File Manager 2.3.1 1853 22

Health & safety 2.2.0 1531 45

Housekeeping 2.4.0 575 8

Limit Checker 2.0.0 2074 13

Memory Dwell 2.3.0 1035 8

Memory Manager 2.3.0 1958 25

Stored Commanding 2.3.0 2314 26

Scheduler 2.2.0 1164 19

240

240

National Aeronautics and Space Administration

Operational Scenarios

cFS Training- Page 241

Application

Commands

Operational Scenarios

Uplink

Comm

App
CI

Comm

Cards

Command

Database

Operator

Commands

Code

Blocks

RF

Uplink

Code Blocks

1

2 3

4

1) Commands sent from
ground system are received
by communication
hardware

2) Communication hardware
processes commands
received and sends code
blocks to receiving
application.

3) Communication application
strips off any hardware
protocol wrappers,
packages Code Blocks for
transfer over software bus ,
and forwards Code Blocks
to CI application

4) CI assembles command
packets, performs
command authentication,
and sends commands to
subscribed applications

Mission Specific Application

* Basic uplink from GSFC Mission Perspective

Any

App

cFS Training- Page 242

1553

Commands

Operational Scenarios

Uplink – Command Routing Example 1

SpWire CI

1553

Comm

Cards

Any

App

Commands to:
Instruments

Command

Database

Operator

Commands

Code

Blocks

RF

Uplink

Spacecraft

Bus

Manager

Commands to:
Electrical System

Power System

Etc.

Code Blocks

Instrument

Manager

1553 Instrument Bus 1553 Spacecraft Bus

1

2 3

Application

Commands
Instrument

Commands

Spacecraft

Commands

4

1) Commands sent from
ground system are received
by communication
hardware

2) Communication hardware
processes commands
received and sends code
blocks to receiving
application.

3) SpWire application
forwards Code Blocks to CI
application

4) CI assembles command
packets, performs
command authentication,
and sends commands to
subscribed applications

* Detailed uplink/command routing from GSFC Mission Perspective

Mission Specific Application

cFS Training- Page 243

Operational Scenarios

Uplink – Command Routing Example 2

SpWire CI
Comm

Cards

Any

App

Commands to:
Instruments

Command

Database

Operator

Commands

Code

Blocks

RF

Uplink

Commands to:
Electrical System

Power System

Etc.

Code Blocks

Instrument

Manager

Instrument Bus

Spacecraft Bus

1

2 3

Application

Commands

Instrument

Commands

Spacecraft

Commands

4a

1) Commands sent from
ground system are received
by communication
hardware

2) Communication hardware
processes commands
received and sends code
blocks to receiving
application.

3) SpWire application
forwards Code Blocks to CI
application

4) CI assembles command
packets, performs
command authentication,
and sends commands to
subscribed applications

a) Assembled
command routed
directly to
applications

b) Assembled
command routed
back to SpWire
application for
distribution to
Spacecraft bus
across spacewire
network

* Detailed uplink/command routing from GSFC Mission Perspective

Mission Specific Application

4b

cFS Training- Page 244

Operational Scenarios

Telemetry Packet Downlink

1) Telemetry is collected from
the various applications in
the system and routed to
TO application

2) TO collects, filters, and
builds real-time VCDUs for
downlink. The VCDU’s are
packaged and routed over
the software bus

3) Communication application
strips off software bus
headers, packages VCDUs
in hardware protocol
wrappers and outputs
VCDUs across hardware
link.

4) Telemetry is received by
the ground system from
communication hardware

Application

Telemetry

Comm

App
TO

Comm

Cards

Telemetry

Database

VCDUs

RF

downlink

VCDUs

3 2

1

Mission Specific Application

* Basic downlink from GSFC Mission Perspective

4

Any

App

cFS Training- Page 245

Telemetry and Science File Downlink

File Data

PDUs

Ground

System

CFDP

1a

2

3

Acks/Naks

File Data

3) CFDP sends PDUs to

Telemetry Output

application for downlink.

4) CFDP handshakes with

ground/uplink to complete

file transfer

SC

2) CFDP copies file data to priority
queue and begins file transfer:

– Opens next file from queue

– Creates and sends meta-data
PDUs

Downlink File/Directory Cmd

a. CFDP periodically checks hot
directory for files.

b. CFDP command received by
Stored Command application
or ground to downlink
file/directory

Priority

Queue

SDR

1)

1b

- CFDP Hot Directory

TO

CI
4

* From GSFC Mission Perspective

- Mission Specific Application

Acks/Naks

cFS Training- Page 246

- CFDP Hot Directory

Copy, Move, etc.

File System Info

Delete File

File Info

Pwr DSB, Init SDR

Cmds

SDR

Operational Scenarios

File Management

FM

CFDP

File Management Cmds

Uplink/Downlink File/Directory Cmds

1) Stored commands sent to
initialize file system(s) and
create partitions

2) Applications create Science, HK,
and/or Engineering files

3) SC (typically via ATS) sends
CFDP downlink directory
commands

4) Ground commands sent to
uplink and downlink files

5) Ground commands sent to
manage the files and directories
in the file system(s).

5

SDR

App

1

Recorder Management

Cmds

5
Science, HK, Eng. Files

File Info

Any

App

SC

Downlink Directory Cmds

FM

3

2

- Mission Specific Application

- Optional Step

cFS Training- Page 247

1) Uplink table – table is written to File System

2) Optionally CRC the table file (via FM file info
command)

3) Disable background checksumming of the
table

4) Send Table commands:

− Load – reads table file and copies
contents into active buffer

− Validate – authenticates table data in
the active buffer

− Activate – writes/commits table data to
RAM

Application handshakes with Table Services
to read updated table data

5) Enable background checksumming of the
table

Operational Scenarios

Uplink System Tables

FM

cFE

Table

App
CS

File Systems

CFDP

Write File

File Info Cmd

Uplink File CmdDisable CS of

specific File Cmd

Read File

Processor RAM

Read File

Write Data

Enable CS of

specific File Cmd

Read Data

Table Load/Verify/Commit

Cmds

1

2

3 4

Read Data

5

- Optional Step

Any

App

Handshake

cFS Training- Page 248

cFE

Table

App

File Systems

CFDP

Read File

Downlink File Cmd

Processor RAM

Write File

Read Data

Table Dump Cmd

1) Send Table dump
command – table file is
written to File System

2) Downlink file – table is
written to ground File
System.

21

Operational Scenarios

Dump System Tables

cFS Training- Page 249

Operational Scenarios

Load/Dump Memory

• MM Features

– Commanded Writes (peek
and poke)

– Commanded Reads via event
messages

– File Reads and Write (show in
diagram)

• Upload to Memory from
Ground

1. Uplink File using CFDP

2. Write the data from a file into
EEPROM or RAM

• Download from Memory to
Ground

1. Read the data from EEPROM
or RAM into a file

2. Downlink File using CFDP

MM CFDP

EEPROM RAM

Uplink File

Cmd

Write from

File Cmd

File Systems

OR

1
2

Upload to Memory from Ground

Download from Memory to Ground

MM CFDP

EEPROM RAM

Downlink File

Cmd

Read to

File Cmd

File Systems

OR

2
1

cFS Training- Page 250

Operational Scenarios

Load and Execute Application Updates

CS

cFE

Executive

Services

File Systems

CFDP

Write File

Checksum File Cmd

Uplink File Cmd

Read File

Read File

Write Data

Executive Service

Stop/Start/Reload/

Restart/Reset

Cmds

1) Send Executive Service
command to stop
application

2) Uplink file – file
containing code
update(s) is written to
File System

3) Checksum the file

4) Send Executive Service
commands to:

 Reload application

 Start application

 Restart application

 Perform Processor reset

2

3

41

- Optional Step

HS

Enable/Disable Monitor

Cmd

cFS Training- Page 251

Operational Scenarios

Health & Safety

HS

1) HS monitors
applications

2) HS monitors event
messages

3) HS Table specified
actions are taken in
response to application
and event monitoring:

a) Reset applications
or the processor

b) Send Event
message

c) Initiate Stored
Command (SC)
recovery sequence

1

SC

cFE

Executive

Services

All

AppsStart ATS/RTS Cmd

Reset calls

Enable/Disable Monitor

Cmd

2

Start RTS Events

Application Info

Recovery

Cmds

TO

Health & Safety

Reporting Events

Not pictured: HS manages watchdog, reports CPU utilization & detects hogging, and outputs aliveness heartbeat to UART.

3a

3b

3c

Mission Specific Application

cFS Training- Page 252

Operational Scenarios

Fault Detection

1) LC monitors table
specified telemetry and
data (watchpoints)

2) LC evaluates
actionpoints and takes
action upon detected
failure condition:

a) Initiate Stored
Command (SC)
recovery sequence

b) Send failure event
messages

SC

LC

All

AppsStart ATS/RTS Cmd

Enable/Disable

Action/Watchpoint Cmds

2a

TO
Limit Fail

Events

Telemetry/Data

Packets
Start RTS

Recovery

Cmds

- Mission Specific Application

1

2b

253

253

National Aeronautics and Space Administration

Tools

cFS Training- Page 254

Unit Test Framework (UTF)

• Tool is used to unit test (full path coverage) cFS Applications

– All cFE APIs and OSAL APIs are simulated

– Allows for return codes to be forced in order to exercise the error path in

the code undergoing unit testing

– Delivered with each cFE release

cFS Training- Page 255

UT-Assert Library

• Used for unit testing cFS applications and tasks through the use of assert statements

– An assert statement evaluates whether a condition is true or false and returns PASS or FAIL.

– Each test case should be self-verifying, rather than needing to be manually verified after running

• Used to test functionality and code coverage of every function in an application, one at a
time

– Each test should be completely independent from other tests

• Each test case should test ONLY its designated function/operation

– Results of sub-functions do not need to be tested – tested in separate test case for each sub-function

• All cFS API library functions (OSAL, PSP, and cFE) are automatically substituted with UT-
Assert stub and hook functions

– Every cFS API library function has a corresponding UT-Assert stub function

– Tests can set individual stub functions to behave in 3 different ways:

1.) Return its default return value (usually CFE_SUCCESS)

2.) Return a specified custom value

3.) Execute a specified custom hook function and then return the resulting return value

– Some cFS API library functions have corresponding hook functions that are called by default

• Can be substituted for a custom hook function or a custom return value

cFS Training- Page 256

What’s Included in the Library

• /src: Contains the library source files

• /inc: Contains the header files for the library source files

• /doc: Contains documentation about UT-Assert

– Note: current documentation is incomplete and outdated

• Will be replaced by this presentation

• /UT Example: Contains an example UT-Assert unit test suite (and the app it tests)

cFS Training- Page 257

What’s Included in the Library

• Contents:
– utassert.c /.h – defines the standard assert function, along with a few related functions

– utlist.c – defines functions to create linked lists, which are used elsewhere in the library

– uttest.c – defines the functions used to add and run test cases

– uttools.c – defines miscellaneous functions that are useful for unit testing

– ut_cfe_***_stubs.c – defines the stub functions for a particular cFS component, and supporting functions

– ut_cfe_***_hooks.c – defines the default hook functions for a particular cFS component

cFS Training- Page 258

Test Structure: Required Test Files

• For the example application:

– <source file name>_test.c / .h: defines the unit test cases for all functions in a particular source file

– <app name>_test_utils.c / .h: defines miscellaneous test functions (Setup, Teardown, etc)

– <app name>_testrunner.c: defines the main function, which adds all test cases and runs them

– makefile: standard makefile functionality

258

cFS Training- Page 259

Test Structure: Test Case Flowchart

cFS Training- Page 260

• cFS NASA wide community Babelfish git repository

• Sourceforge

– https://sourceforge.net/projects/cfs-ut-assert/

How to Get the UT-Assert Library

https://sourceforge.net/projects/cfs-ut-assert/

cFS Training- Page 261

Software Timing Analyzer - 1

• Microsoft Windows program that provides visibility into the real-

time performance of embedded systems software

• The software has the following key features:

– Graphically displays task execution as waveforms

• Rising edge indicates that a task is running, Falling edge indicates that a task

is pending

• Can display the execution state of multiple tasks simultaneously

– Calculates Statistics

• Measures task execution interval (how often a task runs) and execution width

(how long it takes to run)

• Measures Min, Max, and Average CPU Utilization.

– Analyzes/searches timing data for user specified conditions

cFS Training- Page 262

Software Timing Analyzer - 2

cFS Training- Page 263

Additional Tools - 1

• Command Ingest (CI) Lab Tool

– Application that accepts CCSDS telecommand packets over a UDP/IP

port

• Telemetry Output (TO) Lab Tool

– Application that sends CCSDS telemetry packets over a UDP/IP port

• Ground System GUI

– Python / QT4 based Command/Telemetry GUI

– Designed for use with CI Lab and TO Lab tools

– Uses C program to send commands over a UDP socket

cFS Training- Page 264

Additional Tools - 2

• Scheduler Lab Tool

– Application that schedules activities with a one second resolution

• Generate Scheduler Table Tool

– Python script used to generate the scheduler definition table

(sch_def_schtbl.c) used by the cFS Scheduler (SCH) application

• Generate Application Template Tool

– Python script used to generate the base code, including the table

definitions, for the new applications listed in the command

• Table CRC Tool

– C program designed to calculate the CRC of a given table file (.tbl) using

the same algorithm as the cFE Table Services flight software

• Elf to cFE Table Tool

• Message ID Print Tool

– Prints the Message IDs used by the cFE

cFS Training- Page 265

cFS Documentation

• cFE Documentation in the “docs” directory

– cFE Requirements Document

– cFE Application Developer’s Guide

– cFE Deployment Guide

– cFE User’s Guide

– OSAL Library API Document

– Tools documentation in the “tools” directory

• Performance Analysis

• Cmd/Tlm utils

• Elf2cfetab

• UTF

• Build Verification Testing results in the “test-and-ground/test-
review-packages” directory

• Each cFS application has ability to generate a Doxygen users
guide (html format)

• Mission “docs” directory

– cFS Deployment Guide

– cFS Tlm and Cmd Mnemonic Naming Convention

266

266

National Aeronautics and Space Administration

Deployment

cFS Training- Page 267

• cFE open Internet access at

http://sourceforge.net/projects/coreflightexec/
– Source code

– Requirements and user guides

– Tools

• OSAL open Internet access at

http://sourceforge.net/projects/osal/
– Source code

– Requirements and user guides

– Tools

• cFS application suite is also available on sourceforge
– Links are available from https://cfs.gsfc.nasa.gov

• cFS Public Website at

http://www.coreflightsystem.org

Where is the cFS?

http://sourceforge.net/projects/coreflightexec/
http://sourceforge.net/projects/osal/
https://cfs.gsfc.nasa.gov/
http://sourceforge.net/projects/coreflightexec

cFS Training- Page 268

cFS Community Projects on Babelfish

• Babelfish provides two services for each project:

– Git repository

– Trac system

• Provides issue tracking and Wiki services

• Babelfish hosts six separate cFS projects/repos:

– cfs_cfe

– cfs_osal

– cfs_psp

– cfs_tools

– cfs_apps

– cfs_test

• Anyone with an NDC account can acquire access

– Contact Greg Limes (gregory.limes@nasa.gov) for an account

mailto:gregory.limes@nasa.gov

cFS Training- Page 269

Location of cFS

Apps source

• The cFS has a complete development environment that is
designed to manage:

– Builds of images for multiple processors

– Multiple processor architectures

– Multiple operating systems

– Different application loads on each processor

– As little duplication of code as possible

Development Environment

Mission-Tree

cFE OSAL PSP

Location of cFE

source
Location of OSAL

source

Location of PSP

source

Build Apps

CPUx Build

Products

Tools

Location of cFS

Tools

CPUx

cFS Training- Page 270

What’s in the cFE Open Source Tarball

Note: There are other PSPs at each center that are not open source

cFS Training- Page 271

What’s in the OSAL Open Source Tarball

Note: There are other OS implementations at each center that are not open source

cFS Training- Page 272

cFS Mission Directory Structure

cfe osal pspapps build

missionxyz

The cFE

repository is

contained

here

The OSAL

repository is

copied

here

Can customize

PSP

implementation

for each CPU

and OS that the

project needs

The flight software

Is all configured and

Built in this tree.

All mission and

platform config files

are copied here

Contains

App source

code that

can be shared

among multiple

build CPUs

docs

Contains

cFS Dep.

Guide &

Naming Con.

Also used to

Store

Mission

specific

documentation

Shell script

that sets the

environment

variables

tools

Contains cFS

Tool suite

cFS Training- Page 273

cFE Directory Structure

docs fsw test-and-ground

cfe

cfe-core

cFE services

and application

source code,

private header

files, unit test

data and driver

Default

Mission CFG

Header files

Default

Platform CFG

Header files

mission_inc platform_inc

cFS Training- Page 274

cFS Mission Directory Structure

cfe osal pspapps build

missionxyz

The cFE

repository is

contained

here

The OSAL

repository is

copied

here

Can customize

PSP

implementation

for each CPU

and OS that the

project needs

The flight software

Is all configured and

Built in this tree.

All mission and

platform config files

are copied here

Contains

App source

code that

can be shared

among multiple

build CPUs

docs

Contains

cFS Dep.

Guide &

Naming Con.

Also used to

Store

Mission

specific

documentation

Shell script

that sets the

environment

variables

tools

Contains cFS

Tool suite

cFS Training- Page 275

OSAL Directory Structure

doc src build

osal

apps

Sample

applications and

examples and

test code

Board Support

Package source

code for each

supported OS

API Source Code

for each

supported OS

bsp osmake

Supplemental

makefiles for

building

the OSAL

source code

Shell script

that sets the

OSAL_SRC

environment

variable for the

makefile

OSAL core,

sample app, and

example

makefiles and

configuration file

ut_assert

Contains UT Assert

library source for

Performing black box

Unit testing on OSAL and cFE

cFS Training- Page 276

cFS Mission Directory Structure

cfe osal pspapps build

missionxyz

The cFE

repository is

contained

here

The OSAL

repository is

copied

here

Can customize

PSP

implementation

for each CPU

and OS that the

project needs

The flight software

Is all configured and

Built in this tree.

All mission and

platform config files

are copied here

Contains

App source

code that

can be shared

among multiple

build CPUs

docs

Contains

cFS Dep.

Guide &

Naming Con.

Also used to

Store

Mission

specific

documentation

Shell script

that sets the

environment

variables

tools

Contains cFS

Tool suite

cFS Training- Page 277

cFS Mission “build” Directory Structure

build

Where the mission-

wide configuration

Include files go

mission_inc

Build

directory and

configuration

for CPU 1

The “build” directory is where the cFS (cFE Core + cFS Apps) is built

for a mission. This directory contains all configured mission and platform configuration

files.

…

Main

makefile

for all

Mission

builds

Supplemental

makefile for

applications

for all Mission

builds

mcp750-

vxworks6
cpuN

Build

directory and

configuration

for CPU 2

Build

directory and

configuration

for CPU N

Supplemental

makefile for

unit tests

for all Mission

builds

pc-linux

cFS Training- Page 278

cFS “build/pc-linux” Directory Structure

build/pc-linux

Where the

CPU

platform

configuration

include files

go

inc cfe

Where the cFE

Core is configured

And built for the

Cpu1 platform.

Contains

Cfe-config.mak,

Osconfig, etc.

exe

Contains start up

script

“cfe_es_startup.scr”

and

Where built .o files

are placed

docs

Top level doc

source files

and doxygen

output

Each Platform (CPU) directory can have a custom cFE core configuration

which is built for a specific architecture, platform, and operating system. It

can have a unique mix of cFS applications.

Main makefile

for cFE core

build and

all apps

cs

Where application

Makefiles go

1 directory per

application

cFE unit test

build and

run script

cFS Training- Page 279

cFS Mission Directory Structure

cfe osal pspapps build

missionxyz

The cFE

repository is

contained

here

The OSAL

repository is

copied

here

Can customize

PSP

implementation

for each CPU

and OS that the

project needs

The flight software

Is all configured and

Built in this tree.

All mission and

platform config files

are copied here

Contains

App source

code that

can be shared

among multiple

build CPUs

docs

Contains

cFS Dep.

Guide &

Naming Con.

Also used to

Store

Mission

specific

documentation

Shell script

that sets the

environment

variables

tools

Contains cFS

Tool suite

cFS Training- Page 280

cFS “apps” Directory Structure

apps

Where the common

Application include

files go such as

shared lib headers

inc cs

Source directory for

the cFS CS App

fm

Source directory for

the mission specific

Instrument Manager

App.

to_lab

Source directory for

the TO Lab App.

The “apps” directory is where all of the cFS applications and

mission unique applications are stored. There are no build products

stored here.

…

cFS Training- Page 281

cFS Application Directory Structure

CS

docs

Documentation

tree

Test_and_groundfsw

Software

tree

Test

tree

The cFS App directory is where a single cFS Application is stored. It

includes all software products, documentation, tests (unit tests and test

procedures) and miscellaneous utilities.

cFS Training- Page 282

cFS Application “fsw” Directory Structure

fsw

src

cFS Application

Source code and

Private header

files

tables

cFS application

table definitions

Mission CFG

Header files

Platform CFG

Header files

mission_inc platform_inc

The “fsw” directory is where all of the software for the cFS Application

is stored. The “src” directory includes all private header files and C source

files. The remaining directories have public and configuration header files

to be installed in the cFS Mission Directory Structure.

for_build

cFS

Application

Makefiles &

doxy files

Unit test data

and driver

unit_test

cFS Training- Page 283

cFS Application “fsw/src” Directory Structure

SC

src

The build system is flexible enough

to have multiple directories

when building code. For apps with

~ 10 files, keep it simple with just

a “src” directory

incapp ats rts

fsw

cFS Training- Page 284

Installation and Configuration

Prerequisites

• cFE open source release

• OSAL open source release

• cFS Application releases (optional)

• Build machine and Target platform

cFS Training- Page 285

Installation and Configuration Steps - 1

• Setup The Mission Directory Structure

– Unpack cFE 6.4.2 open source release package

• Packaged within the cFS Mission Directory Structure Template

– Unpack OSAL open source release package and locate it in the
“misson-xyz/osal” directory

– Unpack mission apps in the “mission-xyz/apps” directory

cFS Training- Page 286

Installation and Configuration Steps - 2

• Install Configuration files and makefiles

– In the missionxyz/build/cpuX directory run “make config” to:

• Install cFS application mission configuration and platform configuration header
files in the appropriate mission tree directory locations

o Xx_mission_cfg.h files go in “mission-xyz/build/inc”

o Xx_platform_cfg.h files go in “mission-xyz/build/cpuX/inc”

o This is not an all inclusive list

• Install cFE Core mission configuration and platform configuration headers in
the appropriate mission tree directory locations

o cfe_mission_cfg.h goes in “mission-xyz/build/inc”

o cfe_platform_cfg.h goes in “mission-xyz/build/cpuX/inc”

o cfe_msgids.h goes in “mission-xyz/build/cpuX/inc”

• OSAL osconfig.h platform config header in the appropriate places.

o osconfig.h goes in “mission-xyz/build/cpuX/inc”

• Install application makefiles in the appropriate mission tree directory locations

cFS Training- Page 287

Installation and Configuration Steps - 3

• Edit Configuration Files

– The following configuration files need to be tailored for the mission:

• cfe_mission_cfg.h -- cFE mission configuration header file

• Any application mission configuration header files (xx_mission_cfg.h)

– For each platform (CPU) config:

• cfe_platform_cfg.h -- cFE platform configuration header file

• osconfig.h -- OSAL platform configuration header file

• Any application platform configuration header files (xx_platform_cfg.h)

– Makefiles

• All top level makefiles have to be edited to reflect the applications that are
being used

– Other files:

• Startup scripts, edit Applications for subscription and table info, etc.

cFS Training- Page 288

Installation and Configuration Steps - 4

• Build the system

– In the missionxyz/build/cpuX directory run “make”

• Compiles, links, and installs cFE core, OSAL, and PSP

o Linked into one core binary file

o Copies core binary to /build/cpuX/exe directory

• Compiles and installs each application

o Unique application object files

o Copies application object files to /build/cpuX/exe directory and to the PROM location
specified in the makefile

• The PSP defines where the cFS build will load/run from

• Builds and installs application table files

o Compiles table source files

o Creates .tbl files

o Copies .tbl files to /build/cpuX/exe directory and to the PROM location specified in the
makefile

289

289

National Aeronautics and Space Administration

Run Time

cFS Training- Page 290

Boot Sequence

• For VxWorks and RTEMS the OSAL and boot logic supports two

memory allocation models for software startup, static and dynamic.

Linux platforms only support dynamic. Regardless of which model is

used, system initialization is very similar

• Reference mission boot requirements

– On a Power-On reset, initialize all processor SRAM

– Validate the CRC of EEPROM Bank 1

– Boot EEPROM bank 1 if it passes CRC validation

– Boot EEPROM bank 2 if bank 1 fails CRC validation

– Store the boot code in non-volatile storage devices which cannot be modified in

flight

– Provide two copies of the FSW code image in EEPROM

– Adhere to the margin requirements of GSFC-STD-1000, Rule 3.07

cFS Training- Page 291

Boot EEPROM Bank selection logic

cFS Training- Page 292

Boot Sequence

PROM

Boot

OS

Kernel

Boot

cFE

Boot

FSW

Init

Reset

• The PROM boots the OS kernel linked with the BSP, loader and EEPROM file system.

 Accesses simple file system

 Selects primary and secondary images based on flags and checksum validation

 Copies OS image to RAM

• The OS kernel boots the cFE

 Performs self – decompression (optional)

 Attaches to EEPROM File System

 Starts up cFE

• cFE boots cFE interface apps and mission components (C&DH, GNC, Science

applications)

 Creates/Attaches to Critical Data Store (CDS)

 Creates/Attaches to RAM File System

 Starts cFE applications (EVS, TBL, SB, & TIME)

 Starts the C&DH and GNC applications based on “cfe_es_startup.scr”

cFS Training- Page 293

cFE Executive Services Startup

Initialize OS Data
structures (task table,

queues etc)

Initialize Core
Applications

Initialize
cFE Apps and shared
libraries (as specified
in ES startup script)

Start
Multitasking

From BSP
Startup

Initialize File Systems

The cFE core is started as one unit. The cFE Core is linked with the RTOS and support libraries and loaded into system
EEPROM as a static executable.

Volatile

File System

Non-Volatile

File System
Startup Script

And cFE Apps/Libs

RAM

cFE Core

cFS App 1

cFS App N

Exception and Reset Log
Log entry

cFE Applications

cFS Training- Page 294

Startup Script

• The startup script is a text file, written by the user that contains

a list of entries (one entry for each application)

– Used by the ES application for automating the startup of applications.

– ES application allows the use of a volatile and nonvolatile startup scripts.

The project may utilize zero, one or two startup scripts.

Object Type CFE_APP for an Application, or CFE_LIB for a library.

Path/Filename This is a cFE Virtual filename, not a vxWorks device/pathname

Entry Point This is the name of the "main" function for App.

CFE Name The cFE name for the APP or Library

Priority This is the Priority of the App, not used for a Library

Stack Size This is the Stack size for the App, not used for a Library

Load Address
This is the Optional Load Address for the App or Library. It is currently not implemented
so it should always be 0x0.

Exception
Action

This is the Action the cFE should take if the Application has an exception.

 0 = Do a cFE Processor Reset

 Non-Zero = Just restart the Application

cFS Training- Page 295

Component Startup

• Immediately after the cFE completes its initialization, the ES

Application first looks for the volatile startup script referenced by

configuration parameter CFE_ES_VOLATILE_STARTUP_FILE.

• If ES does not find the file, it attempts to open the file referenced by

configuration parameter CFE_ES_NONVOL_STARTUP_FILE.

EEPROM

File System

cFE

Startup

File

RAM

File System

On a Power-On Reset, the cFE

reads the cFE Startup File from

the EEPROM File System ONLY.

On a Processor Reset, the cFE First checks

the cFE RAM File system for a cFE Startup

File. This allows new applications to be

loaded from the RAM disk before committing

them to EEPROM.

POWER ON RESET

(Hardware or Software)

PROCESSOR RESET

1) Only look in the

EEPROM File System

for the cFE Startup File

1) First check for the cFE Startup

file in the RAM File System

2) If not found in RAM,

use the EEPROM File System

cFE Startup File.

EEPROM

File System

cFE

Startup

File

cFE

Startup

File

cFS Training- Page 296

Example cfe_es_startup.scr

CFE_APP, /cf/apps/ci_lab.o, CI_Lab_AppMain, CI_LAB_APP, 70, 4096, 0x0, 0;

CFE_APP, /cf/apps/sch_lab.o, SCH_Lab_AppMain, SCH_LAB_APP, 120, 4096, 0x0, 0;

CFE_APP, /cf/apps/to_lab.o, TO_Lab_AppMain, TO_LAB_APP, 74, 4096, 0x0, 0;

CFE_LIB, /cf/apps/cfs_lib.o, CFS_LibInit, CFS_LIB, 0, 0, 0x0, 0;

!

! Startup script fields:

! 1. Object Type -- CFE_APP for an Application, or CFE_LIB for a library.

! 2. Path/Filename -- This is a cFE Virtual filename, not a vxWorks device/pathname

! 3. Entry Point -- This is the "main" function for Apps.

! 4. CFE Name -- The cFE name for the the APP or Library

! 5. Priority -- This is the Priority of the App, not used for Library

! 6. Stack Size -- This is the Stack size for the App, not used for the Library

! 7. Load Address -- This is the Optional Load Address for the App or Library. Currently

not implemented

! so keep it at 0x0.

! 8. Exception Action -- This is the Action the cFE should take if the App has an exception.

! 0 = Just restart the Application

! Non-Zero = Do a cFE Processor Reset

!

! Other Notes:

! 1. The software will not try to parse anything after the first '!' character it sees. That

! is the End of File marker.

! 2. Common Application file extensions:

! Linux = .so (ci.so)

! OS X = .bundle (ci.bundle)

! Cygwin = .dll (ci.dll)

! vxWorks = .o (ci.o)

! RTEMS with S-record Loader = .s3r (ci.s3r)

! RTEMS with CEXP Loader = .o (ci.o)

297

297

National Aeronautics and Space Administration

Mission Examples

cFS Training- Page 298

Example Mission 1 - Software Architecture

GMI

Manager

Time

Services

C&DH App

Inter-task Message Router (SW Bus)

Event

Services

Stored

Commanding

Scheduler

Housekeeping

Executive

Services

DPR

Manager

Cmd &

Tlm

Checksum

cFE App

cFS App

Memory

Dwell

S-Comm

GN&C App

Software

Bus

Command

Ingest

Telemetry

Output

SBC

1553

Memory

Manager

Spacecraft

Data

Recorder

Space

Wire
1553 Bus

Controller

S/C

Data

Data

Storage

Health

&

Safety

EDAC

Memory

Scrubber

DIO

Time

Registers

Instr.

Data

Recorder

Manager

(new)

Power &

Support

(new)

MAC, BME,

& PSE

Time

Manager

(new)

Limit

Checker

GPS

Cmd &

Tlm

File

Manager

CFDP

File

Transfer

Status

File

Commander

(new)

SBC RAM & EEPROM

DSB

Housekeeping

Recorder

(new)

Control

Law

Command

Generation
State

Determination

Data

Ingest

Onboard

Models

Table

Services

cFS Training- Page 299

Example Mission 1 - Noteworthy Items

• cFE was very reliable and stable

• Easy rapid prototyping with heritage code that was cFE compliant

• Layered architecture has allowed COTS lab to be maintained through all builds

• Lines of Code Percentages:

Source Percentage

BAE 0.3

EEFS 1.7

OSAL 2.1

PSP 1.0

cFE 12.4

GNC Library 1.6

cFS Applications 23.5

Heritage Clone & Own 38.9

New Source 18.5

cFS Training- Page 300

Example Mission 1

SLOC Count with SEER-SEM Estimates

Module Name
Effort

hours
Cost

Effort

hours
Cost

Effort

hours
Cost

Effort

hours
Cost

OS API & OSAL 2,338 6,205 5,291 901 -$ 278

BSP 1,492 3,960 3,376 575 -$ 178

Executive Services 4,737 12,572 10,720 1,826 -$ 564

Event Service 1,429 3,793 3,234 551 -$ 170

File System 763 2,025 1,727 294 -$ 91

Mission Config Include Files 1,857 4,928 4,202 716 -$ 221

Software Bus 2,017 5,353 4,564 777 -$ 240

Table Service 2,182 5,791 4,938 841 -$ 260

Time Service 1,941 5,151 4,392 748 -$ 231

cFE Configuration (hdr files) 226 600 511 87 -$ 27

cFE platform Support Pkg 827 2,195 1,872 319 -$ 98

CFS Library 166 441 376 64 -$ 20

Checksum 2,811 7,460 6,361 1,083 -$ 335

File Manager 1,664 4,416 3,766 641 -$ 198

File Commanding 447 1,186 1,012 172 -$ 53

Health & Safety 1,433 3,803 3,243 552 -$ 171

Memory Manager 1,927 5,114 4,361 743 -$ 229

Scheduler 1,067 2,832 2,415 411 -$ 127

Mode Manager 2,175 5,772 4,922 838 -$ 259

Housekeeping 554 1,470 1,254 214 -$ 66

Stored Commands 2,033 5,396 4,601 784 -$ 242

Limit Checker 1,812 4,809 4,101 698 -$ 216

Memory Dwell 1,003 2,662 2,270 387 -$ 119

cFDP 8,286 21,991 18,751 3,193 -$ 986

Total SLOC 45,187 119,746 102,258 17,415 -$ 5,377

Defect Prediction 25230 8

SLOC

(Logical)
New DO-178b Class BNew Do-178b Class A GSFC Clone & Own Class B CFS Use Class B

57.8 FTE 49.6 FTE 8.2 FTE 2.6 FTE

(JPL SLiC tool)

cFS Training- Page 301

Mission Specific Apps

Example Mission 2 - Software Architecture

cFS Core Services

cFS Configurable Applications

Mission Specific I/O Apps

Scheduler

Inter-task Message Router (SW Bus – Publish/Subscribe)

Event

Services

Health &

Safety

Manager

Executive

Services

Time

Services
Software

Bus

Command

Ingest

Telemetry

Output

Data

Storage

Mass

Storage

System

SSR

Table

Services

GNC-C

Application

House-

keeping

Limit

Checker

Digital IOAnalog I/O
GNC-G

Application
Prop

Application

LN200

IMU

GPS/SIGI

Altimeter

Javad

GPS

Automated

Flight

Manager

(AFM)

EPS

Application

Prop HW

232

422

C&T

Application

1553

Nav Fast

Propagate
Nav

UPP
Nav – KF

(Kalman

Filter)

Nav - IMU

Preprocessor

EPS HW

GPS IO

Alt IO

LN200 IO

SIGI,

1553

IO

232

GNC Sensors

Sequencer

Payload

App

(HDS)

GNC-N Apps

Phase 3 Software

C&T

Hardware,

Radio (Framed CCSDS)

100 Hz
100 Hz100 Hz

50 Hz

25Hz
1 Hz

100 Hz10 Hz 10 Hz 10 Hz

50Hz

5 Hz

5 Hz

50 Hz

50 Hz
50 Hz

5 Hz

5 Hz

10 Hz

1 Hz

Bkground

1 Hz

5 Hz

cFS Training- Page 302

302

Example Mission 2 - Software Components

Flight Software –

AiTech 750GX PPC/cPCI

Mission

Specific

Applications

(GNC, etc.)

cFS

Apps

(Cmd,

Tlm, …)

Custom

Sensor

& I/O

Apps

cFS Infrastructure

I/O Hardware Devices (Serial, 1553, A/D)

VxWorks 6.7 Operating System

Trick Simulation Infrastructure (JSC)

Vehicle sensor & effector

models

Dynamics, Time,

Environmental Models

Linux OS

Command

ITOS Infrastructure &

Database (Goddard)

Linux OS

Telemetry

Displays

Database

Displays

Simulation Software Ground Software

Flight Software

303

303

National Aeronautics and Space Administration

Flight Software
Lessons Learned

cFS Training- Page 304

FSW Lessons Learned

Plan Ahead!

cFS Training- Page 305

FSW Lessons Learned

• FSW involvement starts during early mission
formulation stages

– Participate in ground/flight trades, hardware/software trades,
mission cost estimates

• Formal Development and Test Processes do pay-off

– NPR 7150.2

• Detailed FSW Requirements are critical

– ‘Communicate’ exactly what FSW will do

– Create clear agreement among developers, testers, Systems
Engineers, Ground Operators, Hardware subsystem engineers

• Interface Control Documents are critical

– Must get detailed hardware and software interface definitions in
writing and signed-off

cFS Training- Page 306

• Do not compromise on Testing!

• Formal and Informal Review of FSW Test Scenarios,
Test Scripts and Test Results should be held

– FSW Engineers, Project Systems Engineers, Hardware
Subsystem Analysts, Operations

– Walkthroughs find errors

– Formal Reviews (Standup Presentations) facilitate Project level
resolution of FSW risks

• High Fidelity FSW Testbed is very important

– FSW must execute on flight-like hardware

– Simulations must accommodate ground validation of FSW

– Essential for post-launch maintenance of FSW

Lessons Learned

307

307

National Aeronautics and Space Administration

Backup

cFS Training- Page 308

Acronym List - 1

API Application Programmer Interface

APL Applied Physics Lab

ASIST Advanced Spacecraft Integration and System Testing

ATS Absolute Time Sequence

BC Bus Controller

BT Build Test

bps bits-per seconds

Bps Bytes-per seconds

BSP Board Support Package

C&DH Command and Data Handling

CCSDS Consultative Committee for Space Data Systems

CDS Critical Data Store

CESE Center for Experimental Software Engineering

CFDP CCSDS File Delivery Protocol

cFE Core Flight Executive

cFS Core Flight Software System

CM Configuration Management

CMD Command

COTS Commercial Off The Shelf

cPCI Compact PCI

CRC Cyclic Redundancy Check

CS Checksum

DMA Direct Memory Access

DS Data Storage

EEPROM Electrically Erasable Programmable Read-Only Memory

EOF End of File

ES Executive Services

EVS Event Services

FDC Failure Detection and Correction

FDIR Failure Detection, Isolation, and Recovery

FM File Management, Fault Management

FSW Flight Software

cFS Training- Page 309

Acronym List - 2

GNC Guidance Navigation and Control

GSFC Goddard Space Flight Center

GOTS Government Off The Shelf

GPM Global Precipitation Measurement

GPS Global Positioning System

Hi-Fi High-Fidelity Simulation

HK Housekeeping

HS Health & Safety

HW Hardware

Hz Hertz

I&T Integration and Test

ICD Interface Control Document

IPP Innovative Partnership Program Office

IRAD Internal Research and Development

ITAR International Traffic in Arms Regulations

ISR Interrupt Service Routine

ITOS Integration Test and Operations System

IV&V Independent Verification and Validation

JHU Johns Hopkins University

KORI Korean Aerospace Research Institute

LADEE Lunar Atmosphere and Dust Environment Explorer

LC Limit Checker

LDS Local Data Storage

LRO Lunar Reconnaissance Orbiter

Mbps Megabits-per seconds

MD Memory Dwell

MET Mission Elapsed Timer

MM Memory Manager

MS Memory Scrub

NACK Negative-acknowledgement

NASA National Aeronautics Space Agency

cFS Training- Page 310

Acronym List - 3

NESC NASA Engineering and Safety Center

NOOP No Operation

OS Operating System

OSAL Operating System Abstraction Layer

PCI Peripheral Component Interconnect

PSP Platform Support Package

RAM Random-Access Memory

RM Recorder Manager

ROM Read-Only Memory

RT Remote Terminal

R/T Real-time

RTOS Real-Time Operating System

RTS Relative Time Sequence

SARB Software Architecture Review Board

S/C Spacecraft

SB Software Bus

SBC Single-Board Computer

SC Stored Command

SCH Scheduler

S-COMM S-Band Communication Card

SDO Solar Dynamic Observatory

SDR Spacecraft Data Recorder

SIL Simulink Interface Layer

SpW Spacewire

SRAM Static RAM

SSR Solid State Recorder

STCF Spacecraft Time Correlation Factor

SUROM Start-Up Read-Only Memory

SW Software, Spacewire

TAI International Atomic Time

TBD To be determined

cFS Training- Page 311

Acronym List - 4

TBL Table Services

TLM Telemetry

TDRS Tracking Data Relay Satellite

TM Time Manager

TO Telemetry Output

TRMM Tropical Rainfall Measuring System

UART Universal Asynchronous Receiver/Transmitter

UDP User Datagram Protocol

UMD University of Maryland

UT Unit Test

UTC Coordinated Universal Time

VCDU Virtual Channel Data Unit

XB External Bus

XBI Instrument 1553 External Bus

XBS Spacecraft 1553 External Bus

